圆的面积教学反思

时间:2021-11-27 17:31:05 教学反思 我要投稿

圆的面积教学反思

  身为一位到岗不久的教师,我们的任务之一就是课堂教学,我们可以把教学过程中的感悟记录在教学反思中,教学反思应该怎么写呢?以下是小编为大家收集的圆的面积教学反思,仅供参考,希望能够帮助到大家。

圆的面积教学反思

圆的面积教学反思1

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不同

  本课开始,我先让学生比较圆的周长与圆的面积有什么不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的'面积计算的方法奠定基础。

  二、学具演示,激发探究

  通过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。现在回想起来,我不应该一上来就问如何计算圆的面积,而应该先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自己手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自己制作的学具操作起来很不方便,既耽误时间,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决问题的能力得到了提高。但值得反思的是,我总是抱着一节课应该解决一个知识点的想法,所以为了赶时间,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时间,这是我今后课堂教学应该特别注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用。在每一道练习题的设置上,都有不同的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时间短,我有点操之过急,只是让学生草草地操作,更多的是通过自己的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教学反思2

  《圆的面积》是学生学习求曲线图形面积第一课,是求图形面积的一次重要转折。探究圆的面积计算公式,“化曲为直”是最基本的思想,它需要学生运用已有的知识经验来实现“新知到已知”的转化,最后推导出圆的面积计算公式。

  在教学本课时,我努力做到了以下几点:

  1、重视学生活动经验的积累。先引导学生用“数方格”的计算圆面积,感受到其方法既不方便又不准确,再启发学生“能否将圆转化成我们学过的图形进行研究”。在此过程中,充分调动学生已有的知识经验,回忆平行四边形的面积计算公式的推导过程,以实现学生对“新知转化为已知”这一数学学习方法的迁移。再通过小组合作,剪一剪、拼一拼,让学生亲身经历“转化”的过程,进一步促进了学生对这一方法经验的内化。

  2、重视培养学生“数学化”的口头表达能力。在教学中,教师通过课件演示,让学生清楚地看到:把圆等分成4份、8份、16份、32份……拼成的图形愈趋向平行四边形,并适时引导学生用“越……越……”的句式说出自己的发现,让学生深刻感受到化曲为直中“无限接近”的极限思想。在发现新拼成的平行四边形的与圆的联系后,引导学生用“因为……所以……”的句式表述出由平行四边形面积计算公式推导出圆面积计算公式的过程,培养了学生思维的严密性和语言表述的准确性。

  3、充分发挥多媒体课件的作用。在教学中,教师通过课件演示,直观形象地再现了拼成的平行四边形与圆各部分之间的`联系(底相当于圆周长的一半,高相当于圆的半径),轻松化解了教学难点,让学生教容易地推导出了圆的计算公式。

  不足之处:

  1、在引导学生“把圆转化成已学过的图形”进行面积研究时,教师缺乏有效的启发——为什么要把“曲”化为“直”,缺乏必要的指导——圆如何剪、如何拼,致使小组活动中某些学生无从下手。

  2、由于担心学生知识底子薄,无法按时推导任务,教师在引导学生发现“拼成的新图形和圆的联系”时,牵的多,放的少,抑制了学生思维的主动性、独立性和创造性。

圆的面积教学反思3

  提问:请大家想一想,我们在推导平行四边形面积计算公式时,用的是什么办法?(割补法)(多媒体动态演示)

  (边演示边讲解:沿着平行四边形的高剪开,将剪开的三角形移至右边补上,拼成一长方形,根据原来平行四边形与拼成的长方形之间的关系推导出平行四边形面积公式)。

  导入:把所学图形进行分割、拼摆转化成学过的图形,然后根据学过图形的面积计算公式推导出新图形的面积公式,今天我们也按这种思路来推导圆的面积计算公式。

  割补图形(四人小组):

  1.将圆4等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  2.将圆8等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  3.将圆16等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  4.将圆32等分,然后拼插起来,观察拼接成的图形的边的形状是怎样的?

  检查操作结果(多媒体演示):

  把圆平均分成4等分,拼成的图形很不规则。

  把圆平均分成8等分,拼成的图形近似于平行四边形,边的形状显波浪形。

  把圆平均分成16等分,拼成的图形更近似于平行四边形,边的形状较直。

  把圆平均分成32等分,拼成的图形非常近似于平行四边形,边的形状更直。

  请同学们闭上眼睛想一想:如果我们继续将圆等分成64份,128份,……结果会怎样呢?(对,如果把圆面等分的.份数越多,那么拼成的图形会越接近于长方形)

  (请睁开眼睛看屏幕,多媒体演示64等分)

  推导公式:

  刚才我们把圆转化成了长方形,那么如何根据长方形的面积推导出圆的面积公式呢?

  我们以把圆16等份,拼成长方形为例来推导(同桌讨论)

  拼成的近似长方形的宽相当于圆的什么(半径)

  拼成的近似长方形的长相当于圆的什么?(周长一半,c/2=2πr/2=πr)

  圆转化成长方形时,尽管图形发生了变化,但什么没变?

  因为圆的面积和长方形面积相等,

  所以长方形的面积=长×宽

  圆的面积=πr×r

  =πr·r

  学生复述、多媒体演示,集体复述:

  近似长方形的长相当于圆的周长的一半(闪动),

  近似长方形的宽等于圆的半径(闪动)

  长方形的面积=长×宽

  所以圆的面积=πr×r

  (r×r可以写作r的平方,表示两个r相乘)

  用字母表示:S=πr·r

  教后反思:学生的学习能力不是靠传授形成的,而是在教学活动中,靠学生自己去“悟”、去“做”、去“经历”、去“体验”的。圆面积计算公式的推导是教学的一个难点。本节课通过直观演示和学生动手操作等方法,充分运用多媒体课件辅助教学,给学生以生动、形象、直观的认识,通过学生多次不同的剪拼,采用转化、想象等,利用等积变形把圆的面积转化成学过的平面图形,逐步归纳出圆的面积计算方法。这样多层次的操作,多角度的思考,既沟通了新旧知识的联系,又培养了学生的推理能力。这个环节,让学生充分经历了操作、观察、想象、推理、反思等数学活动与数学思考过程,明确了圆的面积与半径之间的关系。充分的探究活动,既培养了学生的空间想象能力,也培养了学生的合情推理能力,有效促进了学生思维能力的发展。<

圆的面积教学反思4

  圆的面积是学生在学习了圆的基本特征以及圆的周长的基础上进行探讨、学习的,因为学生在学习圆的周长的时候已经了解了化曲为直的数学思想,所以,在学习圆的认识的时候继续渗透这种思想,以及再引申到数学的极限思想。这有利于学生知识的迁移,也是学生在学习上的又一次突破。因此,在教学中我注重以下几个环节的教学:

  一、回顾五年级多边形面积的计算公式推导方法,引导学生求圆的面积也可以把圆转化成学过的图形,从圆的周长到圆的面积体验其中不同本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、让学生猜测,激发探究,在了解圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来。

  三、演示操作,加深理解,当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个之前准备好的圆,小组拼一拼,说一说能拼成什么图形?并思考它与圆有怎样的关系。这样,通过学生操作,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。

  四、引导学生主动参与知识的形成过程。本课时教学的重点是圆的面积计算公式的推导。教学时,我作为引导者只是给学生指明了探究的方向,而把探究的过程留给学生。学生则以小组为单位,通过合作剪拼,把圆转化成学过的'图形(平行四边形),我把各小组剪拼的图形逐一展示后,又结合课件演示,引导学生通过观察发现“分的份数越多,拼成的图形就越接近于长方形”,并从中发现圆和拼成的长方形之间的关系,从而根据长方形面积的计算公式,推导出圆面积的计算公式。在整个推导过程中,学生始终以积极主动的状态参与学习讨论,共同经历知识的形成过程,体验成功的喜悦。这样的学习方式不仅有利于学生理解和掌握圆的面积的计算公式,而且培养了他们的创新意识、实践能力、探索精神。在掌握数学学习方法的同时,学生的空间观念得到进一步发展。

  五、存在和改进的地方有:

  1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;

  2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!

圆的面积教学反思5

  圆也是最常见的平面图形,它是最简单的曲线图形。俗话说“温故而知新”,在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下头探究圆的面积计算的方法奠定基础。

  一、动手操作,推导圆的面积公式

  学生经过操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。经过观察、讨论、比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样使学生始终参与到如何把圆转化为长方形、平行四边形(拓展到三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决问题的本事得到了提高。

  二、多媒体辅助教学,教学资料立体呈现

  经过学生的操作,教师再运用Flash动画演示、幻灯片等多媒体辅助教学手段。这样教学重点得以突出,教学难点得到分散。经过计算机的声、光、色、形,综合表现本事,图像的翻滚、闪烁、重复、定格、色彩变化及声响效果等能给学生以新奇的刺激感受,运用它能吸引学生的注意力,激发学生的学习兴趣,调动学生的进取性、主动性、创造性。

  三、分层练习,体验运用价值

  结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不一样的层应对学生的学习情景进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际资料,让这节课所学的资料联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用本事。在每一道练习题的设置上,都有不一样的目的性,教师注重了每个练习的指导侧重点。总之教学中教师能够充分发挥主导作用,体现学生的`主体地位,引导学生自觉地参与获取知识的全过程,主动地探求知识,强化学生的参与意识,促进学生主动发展,提高课堂教学。

  圆的面积教学反思(八):

  《圆的面积》教学反思

  《圆的面积》是在学生掌握了平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本节教学我主要从以下几个方面来进行教学:

  一、在探究之前,先引导学生回忆以前探索平面图形面积的方法,引导学生发现“转化”的方法,为探究圆的面积计算方法奠定基础。然后经过课件让学生观察一组趣味的图形的变化,从而感知随着正多边形边数的增加,图形越来越接近圆形。学生观察到了“直线图形”和“曲线图形”之间的联系,从而进一步探究圆的面积方法。

  二、让学生大胆猜测圆的面积怎样推导。圆的周长和直径、半径有关系,圆的面积和什么有关系?学生猜测后,再拿出准备好的两个同样大小的圆,将其中一个平均分成若干份,然后拼成长方形,学生动手剪拼好后观察比较,发现把一个圆平均分成的份数越多,这个图形就越接近长方形。再比较圆形和这个拼成的图形之间的关系。经过观察、分析,发现圆的面积就是拼成长方形的面积,圆的周长一半就是长方形的长、圆的半径就是长方形的宽。最终让学生推导出圆的面积计算公式。

  学生经历公式的推导过程,不仅仅加深他们对公式的理解,并且还有效的培养了学生的逻辑思维本事,学生在求知的过程中品尝到成功的喜悦。值得反思的是,为了赶时间,我总是更多的关注举手回答问题的学生,没给学困生留下足够的思考时间,这也是我今后课堂中应当注意的地方。

圆的面积教学反思6

  目标预设:

  1、使学生经历操作、观察、估算、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决相关的简单实际问题。

  2、使学生进一步体会转化的方法的价值,培养学生运用已有知识解决实际问题和合情推理的能力,培养空间观念,并渗透极限思想。

  教学过程:

  一、引导估计,初步感知。

  1、出示圆形电脑硬盘。引导学生思考:要求这个硬盘的面积就是要求什么?圆面积的大小与什么有关?

  2、估计圆面积大小与半径的关系。

  师先画一个正方形,再以正方形的边长为半径画一个圆,估计圆的面积大约是正方形面积的多少倍,在这里正方形边长是r,用字母表示正方形的面积是多少?圆的面积与它的半径有什么关系?

  二、动手操作,共同探索。

  1、引发转化,形成方案。

  (1)我们如何推导三角形,平行四边形,梯形的面积公式的?

  (2)准备如何去推导圆的面积?

  2、动手操作,共同探究

  (1)把一个圆平均分成了8份,每一份的图形是什么形状?能把这些近似的三角形拼成一个学过的图形吗?

  (2)动手操作。同桌为一组,把课前准备的16份拼一拼,能否拼成一个近似的平行四边形。

  (3)比较:与刚才老师拼成的图形有何不同?

  (4)想象:如果我们把这个圆平均分成32份、64份……拼成的图形有何变化呢?

  如果一直这样分下去,拼成的图形会怎么样?

  3、引导比较,推导公式。

  圆与拼成的长方形之间有何联系?

  引导学生从长方形的面积,长宽三个角度去思考。

  根据学生回答,相机板书。

  长方形的面积=长×宽

  ↓↓↓

  圆的面积=∏rr

  =∏r2

  追问:课始我们的估算正确吗?

  求圆的面积一般需要知道什么条件?

  三、应用公式,解决问题

  1、基本训练,练练应用公式,求圆的面积。

  2、解决问题

  (1)出示例9,引导学生理解题意。

  要求喷水器旋转一周喷灌的面积就是求什么?喷水距离5米是指什么?

  (2)学生计算

  (3)交流,突出5平方的计算

  四、巩固练习

  1、练习十九1求课始出示的光盘的面积

  2、在一块长方形的草地上,一只羊被3米长的绳子拴在草地正中央的桩上(接头不计)这只羊最多能吃到多大面积的草?

  五、这节课你有什么收获?你认为重点的

  地方有哪些?

  引导学生回顾圆面积的推导过程,知道圆周长如何求面积?总结圆面积计算的方法)

  六、课堂作业

  补充习题51页2、3、4题

  拓展右图中正方形的面积是8平方厘米。已知圆的直径如何求面积,已知圆的周长如何求面积。

  圆的面积是多少平方厘米?

  反思:

  1、变教教材为用教材教,教材通过例7,用数方格的方法让学生初步感知圆面积的计算公式,具体过程是这样的:先让学生用数方格的方法数出1/4圆的面积,再推出圆的'面积,然后填写表格,通过观察数据,发现圆面积与它的半径的关系,整个过程费时又费力,教学时出示例7的图形,在教师的引领下,让学生估算圆的面积,从而发现圆的面积与半径的关系,省时又省力,为本课重难点的掌握,赢得了时间。在推导出计算公式后,不急于进行例9的教学而让学生做练一练中的题目,在学生掌握了圆面积计算公式后,再学习例9,解决实际问题,符合学生的认知规律。

  2、重视动手操作,参与知识的形成过程,当学生探究思维的火花被点燃时,教师巧妙地引导示范、演示,一步步深入挖掘学生的创造性,荷兰数学教育家费赖登塔尔认为:数学学习是一种活动,这种活动与游泳骑自行车一样不经过亲身体验,仅仅看书本听讲解观察他人的演示是学不会的,因此在关键的“化圆为方”环节中,让学生动手操作亲身体验,促使学生的思维由量变到质变,同时操作活动中又巧妙地利用学生的想象把分割过程无限细化,渗透极限思想。

  3、数学来源于生活,又应用于生活,喷水器喷水、光盘、羊吃草问题都是学生常见的生活情境,通过把生活中的问题数学化,学生既体验到活用数学知识,解决问题的快乐,也感受到数学的实际应用价值。羊吃草问题,引发了学生对视而不见的生活现象的“数学思考”。同时羊吃草范围的圆,看不见摸不着,需要学生想象力的参与,在练习层次上加深了一步。过早地解决实际问题,不利于学生基本技能的形成。

圆的面积教学反思7

  圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  透过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,透过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥打下基础。

  一、感受圆的周长与面积的不一样

  本课开始,我先让学生比较圆的周长与圆的面积有什么不一样,之后结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下方探究圆的面积计算的方法奠定基础。

  二、学具演示,激发探究

  透过以前推导平行四边形面积计算的方法,探究圆的面积。探究之前,我问学生:如何计算圆的面积?学生有点不知所措。此刻回想起来,我不就应一上来就问如何计算圆的面积,而就应先让学生猜测圆的面积可能与什么有关,当学生猜测出圆的面积可能与圆的半径有关系时,这样的引入可能更有利于学生解答出我的问题。接下来我让学生把自我手中的小图片分成若干小扇形,从8等份、16等份再到32等份,学生把扇形拼起来,从一个不规则图形,到近似的一个长方形。再让学生在这个长方形中找到圆的周长,找到圆的半径。最后得到长方形的长就等于圆的周长的一半,而它的宽就是圆的半径,最终推导出圆的面积公式。(遗憾的是学生自我制作的学具操作起来很不方便,既耽误时光,又不规范,如果能统一配置学具那会更利于操作。)学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决问题的潜力得到了提高。但值得反思的是,我总是抱着一节课就应解决一个知识点的想法,所以为了赶时光,我总是更多的关注举手发言的优等生,而很少注意学困生,没给他们留有足够思考时光,这是我今后课堂教学就应个性注意的地方。

  三、分层练习,体验运用价值

  结合课本中的例题,我设计了基础练习、提高练习两个层次,从两个不一样的层应对学生的学习状况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的`实际资料,让这节课所学的资料联系生活,得到灵活运用。在每一道练习题的设置上,都有不一样的目的性,我注重了每个练习的指导侧重点。但在整个练习过程中我没能做到充分发挥主导作用,体现学生的主体地位,引导学生自觉地参与解决问题的过程中来。今后教学中应关注学生的参与程度,知识的掌握程度,促进学生主动发展,提高课堂教学效果。

  在这一节课中,我总觉得操作学具时光短,我有点操之过急,只是让学生草草地操作,更多的是透过自我的教具操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,就应给学生足够的思考空间和探索时光,使学生的思维的能动性和创造性得到充分激发,探索潜力、分析问题和解决同题的潜力得到充分提高。另外,在细节的设计还要精心安排。

圆的面积教学反思8

  “圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力,把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。在课堂中教师如果将新课程的理念转化为实际的教学行为,有时就会体会到什么叫做“无心插柳柳成荫”。

  1、课前提出教学目标。

  教学目标的提出有利于学生明确本节课的教学意图,激发学生学习的需要,以便更好的参与到学习活动中去。在两个班的巡讲过程中,我深刻体会到这一点,当我提出“看到课题后,你们认为这节课我们要解决什么问题呢?”学生积极发言:“想解决圆的面积如何计算;想解决圆的面积的计算公式是如何推导的;想学习怎么计算圆的面积等等”。学习目标明确后,我发现两个班的孩子在研究的时候都井然有序,没有不知道该如何入手的,都明确自己在讨论什么,要解决什么问题。汇报的的时候都知道围绕着课前所提出的学习目标回答,没有乱说的,巡讲后我从实践中体会到:教学目标是课堂教学的出发点和最终归宿,教师只有明确教学目标才能更好的驾御课堂;学生只有明确学习目标才能积极参与,事半功倍。

  2、教学形式上,应因材施教,不同的班级和学生采取不同的教学方法。

  课堂中,每名学生都是我们的教育对象,不同的班级,风格、特点也不同。101班的学生比较安静,开始不十分敢发言,于是在复习以前学过的基本图形的面积推导时,我先回忆各种图形的面积推导过程,孩子们说得很好,我也大加赞赏,等他们慢慢熟悉我后,我利用小组讨论来活跃气氛,效果不错,总结时发言的同学多了起来,回答也很到位。98班的学生很活跃,思维快,都抢着举手,学生和我配合也默契。我把知识完全放手交给他们自己解决,把所能想到的方法都用上了:讨论、自学、猜想。学生们都能积极参与,汇报时公式的推导过程说的`很完整,练习题计算起来也不费劲。应该说98班是巡讲中讲的最理想的班级。

  在整个巡讲教学过程中,我发挥了教师的主导作用,突出了学生的主体地位,引导学生主动探究、研究,获取解决问题的各种方法,为学生提供充足的时间、空间、材料,教学围绕学生的学习活动展开。抓住宝贵时机引导学生理解新方法,使新知识迎刃而解。两个班讲下来我最大的收获是教学中的应变能力提高了,不同的学生给了我不同的体会。当然也发现了自己的不足:还是不敢放手把主动权交给学生,即使放手了也牵着一点,这是在今后的的工作中应继续改进的地方;在提出一个问题后应给予学生一定的思考时间,不要过急。

  在今后的教学中我会深深记住这次巡讲,继续改进自己的教学水平。

圆的面积教学反思9

  圆的面积是学生在初步认识了圆,学习了圆的周长,以及在认识了几种平面图形面积的基础上进行教学的。圆是小学阶段学习的最后一个平面图形,学生认识直线图形,到认识曲线图形,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  一、情境的引入,激发兴趣。

  课的开始,我运用两只羊争吵的情境(一只在长方形羊圈里,另一只系在木桩上),比较长方形和圆的面积,既复习了长方形的面积,也激发了学生探究圆的面积的兴趣。

  二、探究的方法,孰优孰劣。

  在探究圆的面积的这一-环节,教材上,先用数方格的方法得出圆的面积是多少,并让学生填好表格,以期发现圆的面积与半径的关系。这部分内容的教学旨在激活学生己有的经验,数出圆的面积,教材表格中却给出了正方形的面积,以及圆的面积大约是正方形面积的几倍。我认为这有些强拉着学生走,并不真正出于学生内在的探究需求。因此,在课的开始,我把这部分内容暂且放着。

  在五年级上册,学生们已经学过用数方格的方法来探究像手掌、树叶等曲线图形的面积;还探索过平行四边形、三角形、梯形的面积。根据这些已有的经验,学生自己可以提出探究圆的面积的两种方法。在发现用数方格的方法的局限性后,重点研究如何用转化的方法探究圆的面积。

  三、探究的过程,自主操作。

  这部分内容的教学,考虑到了学生的现实认知水平,先让学生在自主探索、实践操作、合作交流中找到转化的方法,在此基础上,借助课件,使学生合乎情理地认识到:平均分的份数越多,就越接近长方形,有机渗透了极限的思想,体会了“化圆为方、化曲为直”的转化过程。接着让学生根据提示探索圆的面积的计算公式。

  这节课也存在以下不足:

  一、转化结果单一

  课堂上学生将圆转化为已经学过的平面图形结果单一,只出现了平行四边形。虽然在课的最后以课件的形式出示了三角形和梯形,但这并不能代替学生自己的发现和思考。我想原因有三个:一是我在课上提示了剪,强调了拼,禁锢了学生的思维,使学生想不到直间转化成求多个三角形面积和的方法;而怎么剪对学生来说就是有难度的;二是拼成梯形和三角形是有一定的条件的,要平均分成一定的份数才有可能拼成,三是课上留给学生的时间有限,学生在这么短的时间里完成剪、拼不同的图形是很难的,而留给学生更多的.时间又是不现实的。

  二、缺少思维的碰撞

  我觉得操作探究部分,我有点操之过急。尤其是推导圆的面积公式部分,更多的是通过自己的课件操作来引导学生观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,从而推导出圆的面积计算公式。学生的思维在交流中虽有碰撞,但总觉得不够。在以后这一类的教学中,应该给学生足够的思考空间和探索时间,多进行生生、师生之间的有效交流,让使学生的思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到充分提高。

  我个人认为这一章是整册书教学的难点,学生在作业和考试当中反应出了如下一些问题:

  1、搞不清楚一个圆中直径和半径的关系,主要体现在看到圆的半径或者直径,不能很快求出该圆的直径或者半径。此外,看到圆的直径或者半径,不能很好的算出圆的周长、面积。

  2、知道一个圆的周长,不能很好的求出圆的直径或者半径。对计算一个小数除以3。14,感觉有点束手无策的味道。

  3、不能清楚的求出圆的周长或者面积,往往答非所问,要求面积,他要去算周长,要求周长,他又算成了面积。单位也往往把面积单位和长度单位搞混淆,这也算是部分学生出错的原因。

  4、对于学生来说,最难的是组合图形面积、周长、阴影部分的。相关计算,还有半圆有关的计算都是学生在计算中经常忽略的问题,总是按一个圆的来计算。计算当中,很多学生对半径的平方也是常常出错,对一个数和3。14的乘积,总是会把小数点搞错。

圆的面积教学反思10

  圆是小学阶段最终的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习资料的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  经过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅仅扩展了学生的知识面,并且从空间观念来说,进入了一个新的领域。所以,经过对圆有关知识学习,不仅仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。这节课中,我渗透了曲线图形与直线图形的关系,即化曲为直的思想。本节课,我认为我主要有以下几个亮点:

  一、故事激趣,渗透“转化”重视自主探究,发挥学生主体性

  教学“圆的面积”计算公式推导时,故事激趣,渗透“转化”我先让学生回忆学过的平面图形面积的推导方法,引导学生进行知识迁移,能不能运用割补的方法把圆割补拼成学过的平行四边形、三角形等平面图形,来推导出圆的面积计算公式呢,然后留给学生充分的时间和空间,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自我的推导想法,师生共同倾听并确定学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践本事和创新意识。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一资料是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎样发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的`猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使明白,也能够让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是经过长方形推导的,三角形面积公式是经过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是经过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题能够转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我能够很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓

  三、演示操作,加深理解

  学生经过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才经过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,此刻平均分成16份,自我拼拼看,能拼成什么图形?并想想它与圆有怎样的,样,经过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,贴合学生的认知水平。经过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c、2=πrh=r,平行四边形的面积=圆的面积,从而推导出S平=s圆=π×r×r=πr2。此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,那里课件没有一一演示,而是留给学生充分的空间,让学生自由创新这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中

  碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索本事、分析问题和解决同题的本事得到了提高。

圆的面积教学反思11

  《圆的面积》,是九年制义务教育六年级的教材。圆是小学阶段最后的一个平面图形,学生从学习直线图形的认识,到学习曲线图形的认识,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了曲线图形与直线图形的关系。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。

  一.明确概念:

  圆的面积是在圆的周长的基础上进行教学的,周长和面积是圆的两个基本概念,学生必须明确区分。首先利用课件演示画圆,让学生直观感知,画圆留下的轨迹是条封闭的曲线。其次,演示填充颜色,并分离,让学生给它们分别起个名字,红色封闭的曲线长度是圆的周长,蓝色的是曲线围成的圆面,它的大小叫圆的面积。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

  二.以旧促新

  明确了概念,认识圆的面积之后,自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?这些都是摆在学生面前的一系列现实的问题。此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。

  根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  三.转变图形

  根据发现,把圆等分成若干等份,小组合作,动手摆一摆,把圆转化成学过的平面图形。考虑学生的实际情况,电脑先演示8等份圆,拼成一个近似的平行四边形,让学生观察它像什么图形?为什么说“像”平行四边形?让学生发表自己的`意见,充分肯定学生的观察。如果说8等份有点像,那么再来看看16等份会怎么样?电脑继续演示16等份的圆,放在一起比较,哪个更像平行四边形?学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的,引导学生闭上眼睛,如果分成32等份会怎么样?64等份呢?……让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想—极限思想的渗透。

  四.公式推导

  平行四边形面积学生都会计算:s=ah引导学生观察平行四边形的底和高与圆有什么样的关系:发现a=c2=πrh=r,平行四边形的面积=圆的面积,从而推导出S=πS=π×r×r=πr2。

  此时,让学生观察思考,利用手中的16等份的图形纸片,拼一拼,还能拼成哪些图形?充分发挥学生的自主能动性,小组合作,共同探究。并根据拼成的图形,推导圆的面积公式。当然,还能拼成三角形,梯形,长方形等,这里课件没有一一演示,而是留给学生充分的空间,让学生自由创新。正如《画》谈“马一角”的文字,“看似未曾着墨处,烟波浩渺满日前.”结合学生拼成的图形并推导,采用不完全归纳法,发现都推导出S=πr2,通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

圆的面积教学反思12

  “圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:

  一、以旧引新,渗透“转化”思想

  在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。

  二、大胆猜测,激发探究

  在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。

  三、动手剪拼,体验“化曲为直”

  学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越

  平行四边形或长方形。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。

  四、演示操作,感受知识的形成

  通过观察,比较、分析,发现圆的'面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的形成。

  五、分层练习,体验运用价值

  结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点。

  但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。

圆的面积教学反思13

  求圆的面积是从生活中喷水头浇灌农田这一生活场景引入,使学生理解了推导圆面积公式的必要性,激发了学生的求知欲望,调动了学生的积极性,使全体学生积极参与到数学学习活动中来。在强烈的求知欲望驱使下,学生凭借已有的生活经验和知识经验,发挥自己地想象,从估计到公式的推导;从数方格到剪拼成学过地平面图形;从已有地平行四边形、长方形面积公式推导出圆面积公式等等这一系列活动引导学生参与并讨论从而形成结论。教学中教师还特别强调学生估算意识的培养和由旧知引入新知的`过渡。

  首先在让学生估一估圆的面积活动中,通过圆的面积与圆内接正方形和圆外切正方形面积的比较,既估计了圆面积的大小范围,又再一次渗透了正多边形逼近圆的方法。然后教学中让学生把圆进行分割,再拼成一个近似平行四边形或长方形的图形,如果分割的份数越多,拼成的图形越接近长方形或平行四边形,由此用平行四边形的面积计算公式或长方形面积计算公式来推导出圆的面积计算公式。

圆的面积教学反思14

  圆是小学阶段最后一个平面图形,学生从学习长方形的认识,到学习圆的认识,从直线到曲线的学习,不论是学习内容的本身,还是研究问题的方法,都有所变化,是学习上的一次飞跃。

  通过对圆的研究,使学生认识到研究曲线图形的基本方法,同时渗透了迁移转化思想。这样不仅扩展了学生的知识面,而且从空间观念来说,进入了一个新的领域。因此,通过对圆有关知识学习,不仅加深学生对周围事物的理解,激发学习数学的兴趣,也为以后学习圆柱,圆锥和绘制简单的统计图打下基础。所以在这节课中,我是这样设计教案:

  一、复习铺垫,导入新课

  在教学伊始,先引导学生回忆以前学过哪些平面图形的面积,平行四边形和三角形的面积公式是怎样推导出来的,在复习的同时渗透“转化”推导方法,圆能不能转化成以前学过的平面图形呢?它的面积计算公式该怎样推导出来呢?引出新课的学习《圆的面积》。

  二、指导操作,推导圆的面积计算公式

  首先理解圆的面积的意义:引导学生回忆面积指的是什么?长方形的面积指的是什么?圆的面积指的又是什么?学生通过回忆面积的意义,能够进一步加深对圆的面积的理解,也为接下来的动手实践“圆的面积”做铺垫。接下来指导操作,推导圆的面积计算公式:怎样求圆的'面积?学生先独立思考,在学生已有自己的想法的基础上,让学生在小组内讨论自己的想法,在交流中探讨出求圆的面积的方法,利用转化法如何把圆转化成我们以前学过的平面图形,接下来让学生拿出学具自己动手实践,然后给学生留出充分的时间来思考,让学生小组合作动手、动脑剪一剪、拼一拼,再把圆转化成学过的平面图形。再引导学生交流、验证自己的推导想法,师生共同倾听并判断学生汇报圆的面积公式的推导过程,看看他们的推导方法是否科学、合理,使学生们经历操作、验证的学习过程。这样有序的学习,提高了学生的实践能力和创新意识,接下来再让学生动手实践改进自己的不足,同时尝试着推导出圆的面积公式,为了加深对圆面积公式的理解,多让学生上台展示自己的推导过程,这样不仅加深对知识的理解,也能够锻炼孩子们的语言表达能力,最后在师生共同推导出圆的面积公式。

  三、巩固练习,拓展应用

  在巩固练习中我本着基础、综合、拓展三个层次,首先题型是基础性的面向全体学生,来巩固刚刚学习的新知识,在全体同学掌握的基础上,进行综合和拓展,这样既能面向全体学生,也能够照顾到学习优秀的学生,练习效果不错。

  不足之处:

  1、课堂纪律有点乱,在探究环节学生讨论的有点激烈,直接导致了课堂纪律乱

  2、课堂时间没有把握好,下课铃声响起,最后几个练习题还没有处理完

  3、教师提的问题有时有点大,让学生不知如何回答

  在接下来的教学中,要改正自己的不足之处,提高自身的业务素质,再努力!

圆的面积教学反思15

  “圆的面积”一课,通过让学生积极主动参与知识的形成的全过程来获取知识,提高学生的归纳、推理的数学思维能力, 把学生的学习主动权还给学生,让学习的问题自然生成,我们会发现的孩子们的思维是多么广阔。本节课基本体现教案设计的意图,能基本完成教学目标。以下有几点体会:

  1、教学中我鼓励学生大胆猜测圆的面积

  发现有的孩子在观察后凭直觉能马上提出猜想,而且这些猜想都含有很多合情推理的成分;当然也有一些孩子开始有“斗大的馒头无从下手”之感,但经过同学间的交流,也逐渐有了较为明确的想法。当学生提出猜想后,我适时进行点拨,以促进学生的思维从合情推理水平向逻辑推理水平过渡。如我向学生提问:是不是这些猜想都是正确的呢?如何去证明?借机将解决问题的权利交给学生,让他们自己动手、动脑去证明,通过独立思考和小组交流,让学生对圆的面积有更深入的理解,教学难点也顺利突破。

  2、体现学生的主体性:

  在整节课堂,我重视学生知识的`获得,更重视学生获取知识的过程。围绕引导探索教学模式中的提出问题分析问题 解决问题一般结构进行,先由教师提出问题,怎样求圆的面积?然后由学生自己提出解决的方向,研究的目的明确后,由学生以小组为单位,合作进行拼成已学过的图形,并推导出公式,在整堂课中,剪拼、汇报、推导公式,都是学生自己完成的,教师放手让学生唱主角,注重学生的参与及体现了学生的主体性。

  3、渗透了学习评价:

  在课尾结束时,我问学生:“这节课有什么感受?”学生们纷纷回答,其中一位学生说到:“这节课我认为我们小组表现得非常好,如??”;“我认为甲同学今天表现得很好,可以评为今天的闪亮小明星。”??学生们不仅总结了这节课学到的知识,也总结了同学的上课表现,体现了人文关怀,得到同伴的赞扬更能激发学习的热情和自信心.

  4、不足之处:

  我原先设计的校园情景图,想让学生理解在我们周围,数学问题无处不在,让数学更贴新生活培养学生的一种数学意识,但由于多种原因没有用。同时,由于学生探究过程中会出现许多我料想不到的事情和结果,对老师的临场处理是个考验,每位教师都应具备良好的教学机智。

【圆的面积教学反思】相关文章:

《圆的面积》教学反思09-01

圆的面积教学反思02-05

圆的面积教学反思13篇02-19

圆的面积教学反思(13篇)02-28

圆的面积教学反思(精选5篇)06-16

圆的面积教学反思(15篇)04-03

圆的面积教学反思15篇09-02

《圆的面积》教学反思12篇03-27

《圆的面积》说课稿10-27