列方程教学反思
作为一名优秀的教师,教学是重要的任务之一,对学到的教学技巧,我们可以记录在教学反思中,我们该怎么去写教学反思呢?以下是小编为大家整理的列方程教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。
列方程教学反思1
这是在讲解例题时分析陆地面积和水面面积之间的倍数关系的线段图。这看似简单的一幅图,却难住了我的学生。看到学生在座位上绞尽脑汁也画不出来,真是急啊!课后反思了一下,觉得有以下原因:
1、从小不重视
线段图是四年级才教的解决问题的,但是从一年级就已经有线段图的题目出现在小朋友的面前,此时就应该让我们的.小朋友对线段图有所了解。不应该等到要用了才开始学,那已经来不及了。所以有些老师认为线段图是高年级老师的任务,殊不知在中低年级就应该着手培养了。
2、空间观念不强
空间关系同数量关系一样也是数学能力的基本内容,而且数和形是不可分开的。因此,学生掌握空间关系的知觉能力也是小学数学能力的重要组成部分。然而不少的数学教学方法,偏重于抽象逻辑思维的训练,造成了人的智力开发的残缺。当前许多教育整体改革实验,都提出使学生和谐发展,这都与充分开发脑功能有关。因此培养空间观念尤为重要了。
3、指导力度不够
教师的指导、示范、点拨是培养学生画图能力的关键。学生刚学习画线段图,不知道从那下手,如何去画。教师的指导、示范就尤为重要。首先,教师可以指导学生跟教师一步一步来画,找数量关系。也可以教师示范画出以后,让学生仿照重画一遍,即使是把老师画的图照抄一边,也是有收获的。其次,学生可边画边讲,或互相讲解。教师对有困难的学生一定要给以耐心的指导。最后,学生掌握了一定的技能后,教师可以放手让学生自己去画,教师给以适时的点拨,要注意让学生讲清这样画图的道理,可自己讲,也可分组合作讲。
列方程教学反思2
列方程解含有两个未知数的应用题,人教版九年义务教育五年制第八册33页例6。
列方程解应用题是在第八册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。例6的内容,在算术中称为"和倍"和"差倍"问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。
本节课的教学目标是使学生初步掌握含有两个未知数的应用题的解题思路和方法,会解含有两个未知数的应用题;会用把两个未知数的值代入已知条件看是否符合的方法进行验算;在教学解题思路的同时培养学生初步的分析、综合、比较的能力;在解题过程中进一步培养初步的类推和迁移的能力及养成独立思考的良好习惯。
本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。创设情境,蔡利琦同学和周旭同学两个人互相询问对方的的钱数并说出两个人之间的倍数关系,来猜测两个人各有多少钱?
由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生用算术方法解这道题,还有利于设未知数,找等量关系和列出方程。
之后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。
之后进行检验。虽不要求写在本子上或卷子上,但这是不可忽视的重要步骤,长期要求下去,就可使学生养成良好的检验习惯,增强责任心和自信心,那种做完题不知对错的`做法是后患无穷的。首先从方程的角度来检验,然后再让这两个同学把钱拿出来让大家看一下,果真,结果正如我们预料,同学们感到非常有趣,而且兴奋异常,获得了成功的喜悦。
再想一想,还可以怎样叙述两个人的关系呢?有的同学说,我们还可以告诉大家蔡利琦是周旭的5倍,比周旭多8元钱,那么该怎样解答呢?
同学们积极思考,想出了好多的解题方法,并进行比较概括找出自己喜欢的解法。达到了很好的教学效果。然后进行适时的练习,达到巩固教学效果的目的。
本堂课,在对学生的及时评价反馈上,和环节的处理上还有待于进一步的加强,也恳请领导和各位老师能够帮助我,使我能够在今后的教学中,逐渐加强,能够熟练的驾御课堂。
列方程教学反思3
首先为本课“列方程解决问题”作铺垫,开始的时候设计了两类复习题:一类是训练学生找单位“1”,另一类是用分数乘法解决的问题。
接着,出示例4中的情境图,让学生读题,然后让学生阅读与理解,从图中你知道了什么?让学生先把题意理解透。学生很容易提出问题“小明的体重是多少千克”,重点是给足学生时间和空间,自主探究,或小组合作,解决问题。汇报的时候,;老师可适当引导学生用线段图表示题中的数量关系,从而找到等量关系并列出方程,同时复习一下方程的解法。
同时,肯定有的同学用算术解法,因为一步计算比较好理解。用方程解,只要根据分数乘法的'意义,顺向思考,就能找到等量关系列出方程。所以,教材只给了用方程解的全过程。但是小学生目前还没有接触到比较复杂的,用算术解法很难解决很难理解的那样的应用题,因此对用方程解法的优越性认识不足。一些学生觉得用方程还得写设句,比较麻烦,因此喜欢用算术解法。对此,老师肯定算术解法的正确性,但是不要过于强调。主要从等量关系的角度分析,让学生顺向思维列方程解决问题。
列方程教学反思4
例5是已知朝阳小学美术组的总人数,以及其中女生人数是男生的百分之几,求男、女生各有多少人的实际问题。这是两个相对独立的数量之间进行比较的问题,对题中的两个数量关系学生并不难理解,难点在于如何合适的用字母或含有字母的'式子表示题中两个未知的数量。
教学中,我进行了铺垫。我将“女生人数是男生的80%”改成了“女生人数是男生的 ”后,让学生方程解决问题。集体订正时,要求学生说说单位“1”是哪个,怎么找,解方程后要注意什么。然后将题目改回“女生人数是男生的80%”让学生尝试。结果是出乎意料的好,仅有两人做错。一问,学生齐答:“80%就是 ,跟刚才的题目一样的。”
哈哈,以不变应万变。
列方程教学反思5
本课的教学内容是一个数(已知)是另一个数的几倍多(或少)几,求另一个数。教学注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。让学生明确正确找出题中的等量关系是最为关键的。通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的.策略,帮助学生加深理解方程是一种重要的数学思想方法。
反思这一节课,做得好的方面是:一是从学生的认知水平出发,循序渐进,通过“句——式——方程”的思维过程,让学生感受方程解题的基本方法:即找到了等量关系,方程就自然而然,水到渠成了。 二是练习形式多样,练习有层次。由简到难,有坡度,但目的只有一样,就是让学生通过这些练习能很快找到等量关系,正确列出方程。
不足的方面是:练习的重点在于找准数量关系式。课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,但在进行列方程解应用题时,只满足了让学生说出数量关系式是什么,应该让中下学生再再说说关键句是什么,是根据哪句话找出来的,分析题时可先用铅笔画出来,分清已知量和未知量,用相应的未知数和具体数字表示出来,转化成等式,从而把实际问题转化成数学问题,再利用已有知识解决问题。
列方程教学反思6
在列方程解决实际问题的教学过程中,教师教的重点和学生学的重点,不在于“解”,而在于“学解”。注重的是解决问题的过程。也就是说,要让学生经历寻找实际问题中数量之间的相等关系并列方程解答的全过程。
1、本节课的教学设计,无论是学生对各种解题方法的探索和理解,还是让学生感受列方程解应用题的优越性,都尽量让学生主动参与,亲身体验,学生通过分析、比较、交流、讨论等活动,充分展示他们的思维过程,发展思维能力。
2、应用题的教学难点就是:如何引导学生理解题意,列出需要的'数量关系式或等量关系式。在这个过程中,重要的并不是展示学生的方法如何多,因为解决办法是可以举一反三的,重要的应该是引导学生如何通过分析,找出等量关系式的过程。同时,在分析过程中,让学生掌握多种办法来分析。如通过抓关键句、关键词、关键字列等量关系式;通过画线段图理解题意;通过画示意图来理解题意。学生才会更加积极地思考不同的方法来解决问题,如:本节课中呈现的画线段图、画示意图、抓关键字或词来理解和分析应用题。体现学生的主体地位,让学生在情境中通过自主探究、感悟、理解、掌握新知识。
3、注重练习形式的多样化。本节课的练习安排了三个层次,一是巩固练习,重点让学生说一说等量关系,促进对列方程解应用题的掌握;二是开放性练习,融知识性、趣味性、活动性于一体,学生学习兴趣高,主动性强。三是通过独立作业,检验学生解决问题的能力。
列方程教学反思7
列方程解决实际问题,是新课标教材中使用比较多的一种解决逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学得轻松、灵活、有效,很好地提高了课堂教学的效率。
六年级数学(上册)的第一单元就是在学生五年级学过的解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:
一.重视关键句分析训练,提高学生的分析能力。
解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。如:例1中的关键句:“大雁塔的高度比小雁塔高度的2倍少22米”,根据这句话学生的思维就会直觉的写出这样的相等关系:“大雁塔的高度=小雁塔的高度×2-22”。如果小雁塔的高度不知道就可以直接写出方程,这样问题就很快解答了;通过学习和思考,学生就会很快掌握类似这样的“一个数比另一个数的几倍多几(或少几)”的实际问题,学生就会根据自己的理解和直觉思考用“一个数=另一个数×倍数±几”这种相等关系,如果另一个数是1倍数不知道,可以用方程直接解答。因此学生如果学会抓住关键句分析与思考,能很快提高我们的课堂教学的效率,提高学生的解题能力,对学生的直觉顿悟思维有很大的促进作用。
二.重视学生的语言训练,提高学生的表达能力。
在分析关键句的同时,我们不能仅仅局限于会解答实际问题的层面上,要通过找出关键句、用语言分析关键句,提高学生的思维能力,让学生在学习的过程中关注他们探究知识的方法和过程,理解学生的思维方法,通过交流与学习相互补充和提高。因此,在教学这部分知识的同时,我多次通过语言表达训练学生分析关键句、列出相等关系的口头表达能力。
在教学例2时我通过出示学生熟悉的生活素材:六(1)班有学生48人,男生是女生人数的1。4倍。让学生独立思考和讨论找出题目中的相等关系,学生根据全班48人,知道用“男生人数+女生人数=全班人数”的相等关系,再结合“男生是女生人数的1。4倍。”把题目中的女生人数看做1倍数,那么男生人数就是1。4倍数,如果用x表示女生人数,那么男生人数就是1。4x,这样方程就很快列出来:1。4x+x=48;
如果把第一个条件改成“合唱组男生比女生多48人。”又如何解决呢?让学生自己讨论和交流,自己解答。学生根据刚才的学习体会,很快找到解决的方法。
通过学生的分析、交流与语言反馈表达,不仅提高了学生的表达能力,更主要的体现了学生的主体性,让学生在相互学习和交流中进行学习上的互补,同时也很好地发挥了教师的主导作用,通过学生之间的互帮互学,在交流中可以促进学生直觉顿悟思维的有效组织与思考,便于学生很好的组织自己的语言,理清自己的思维,长期训练,对学生的思维能力有很大的提高。
三.重视学生的.综合训练,提高学生的整体思维。
在学生学会找准关键句、分析关键句的基础上,通过教学我觉得还要结合学生的掌握情况,进行基础性、综合性等训练,使学生的直觉顿悟思维等有层次、有条理得到训练与提高。
在教学中我多次通过训练学生的基础表达拓展到解决实际问题的能力上来,学生学的轻松、愉快、有效。如通过基础训练:苹果是梨的2。5倍,如果梨是x 千克,那么苹果和梨一共有x千克,苹果比梨多x千克,梨比苹果少x千克……,类似这样的题目,长期用短时间训练学生的表达能力,学生对这样的实际问题解决时就能熟能生巧。不仅如此,还要通过适当的变式题目,训练学生的综合思维,适当提高学生的解题难度,促进学生的思维不断得到提高,如我在教学中把“合唱组人数是美术组人数的3倍,合唱组人数比美术组多12人。”这样基础题目通过改编成以下的题目:“合唱组人数是美术组人数的3倍,如果从合唱组调6人到美术组,则两个小组的人数同样多。”让学生比较、交流与思考,通过比较和思考发现题目的差别,找出题目中两组人数差的共同点,找到解题的共同处,对学生直觉顿悟思维有很好的帮助和提高。
教学中我多次通过训练学生的直觉思维,让学生在学习、辨析、交流与反馈表达中使学生的思维在顿悟中豁然开朗,从中感受到学习的乐趣,增强学习数学的信心,通过本单元的教学和反思,学生的解题能力和思维能力通过训练和培养得到了有效的提高,促进了教与学的共同提高。
列方程教学反思8
昨天上午数学科组教研活动,活动内容是教学观摩与研讨,由三年教龄的小陈老师执教五年级《稍复杂的分数应用题》。
虽然教龄还不到五年,但是身为班主任的小陈老师已经很有调控课堂的经验,仪态大方、沉着泠静,孩子们都很积极地投入课堂,几乎每一个孩子参与的热情都很高。
纵观整个课堂,以下几点是值得发扬值得观课的老师借鉴的。
其一,教学流程清晰,环环相扣。首先是设计了几道铺垫的题目,让学生说出各题的数量 关系。接着,出示一道置换书中例题的题作为新课的内容,并让学生回顾列方程解应用题的步骤并解答。然后出示一道类似新课内容(这才是书中的例题)的应用题,让学生独立完成,再将两道题进行对比。在巩固阶段,重视了数量关系这一关键,让学生根据题意写出方程(并不要求完整地解答)。最后是完整解答应用题。
其二,能创造性地使用教材。第一,能根据教学内容设计适当的复习铺垫;第二,能根据学生对问题情境的熟悉程度,适当调整教材例题,使学生能更为清晰地找出等量关系。第三,在巩固运用阶段能抓住教学的重点进行针对性的练习(写关系式列方程不解答)。
当然,每一节课都会留下遗憾,遗憾就是一种资源。留下的遗憾会让执教者、观课者更清晰地看清课堂,更清晰地构架改进后的更为理想的课堂。
下午议课的时候,我们本着研讨和提高的.意旨,提出以下的问题引发大家的思考。
一、抓住教学的关键,发挥教师的主导作用,相信学生,放手让学生探究。这节课的主要的数量关系是一个数比另一个数的几倍多(少)几,求另一个数。这也是新知的生长点,因此教师必须要在此处引发学生的思考,让学生独立地探索,在探索与交流中理解。然后放手让学生独立地、完整地解答。在解答的过程中关注学生完成的情况,尤其是学习困难学生学习认知的情况,在评讲的时候根据学生的情况有的放矢,而不是面面俱到、平均用力。
二、关注到问题中蕴含的多种等量关系,拓展学生的思维,深化学生对数量之间的真正的理解。“一个数比另一个数的几倍多(少)几,求另一个数”对于学生来说是个难点,学生往往对“多或少”,“加或减 ”云里雾里的,再加上受算术解法的干扰,难以建构准确的关系式。教师可以让学生借助线段图理解,可以通过列举“小数据”,可以利用四则运算之间的关系,可以通过学生据理力争的辩论来加深学生的认识。这样,对等量关系进行“变式”,促进沟通各种等量关系之间的联系,拓展了学生的思维。
三、对一些术语的使用和做法。其一,是对方程进行验算还是对应用题进行验算?应该将结果代入原题而不仅仅是方程,代入方程左右两边相等,只能说明方程的解是正确的,而不能说明是满足应用题的解。其二,是等量关系还是数量关系。虽然等量关系”特指数量间的相等关系,是数量关系中的一种。但是,一般来说在方程中成为等量关系,这种称呼本身就有益于学生对等量关系的理解-----方程是含有未知数的等式。
此外各个环节后的小结也能起到画龙点睛的作用,各环节直接的衔接也是一门学问。
课堂是研讨的基础,研讨是成长的基础,这些最常规的活动给人不一般的收获!
列方程教学反思9
列方程解决简单实际问题,是在学生学习了利用等式的性质解简单方程的基础上,将实际问题抽象成方程的过程。
经过第一课时的教学后,我发现大部分学生对于列方程解决简单实际问题的过程,掌握地还不错,只有个别同学会在“解:设………为X…。”X的后面会忘记加单位名称;还有个别同学会在求出的结果X=…,得数的后面反而又加了单位名称。我想格式上问题经过老师的几次提醒,个别同学会有所改正的。
格式上的问题是比较好纠正的,然而理解上的问题就没有那么简单了。列方程解决实际问题的难点是:根据实际问题找出等量关系式,再列出方程。但是有些理解能力较弱的学生不知道怎样来找等量关系式。所以我在设计第二课时练习课的时候,我想先教会学生找出题目中等量关系式的本领和方法。 我小结出平时做的练习题中经常会出现的一些等量关系,如下:
1、根据常用的数量关系确定等量关系。
例如:甲乙两地相距1820千米,汽车每小时行130千米,求汽车从甲地到乙地需要多少小时?
等量关系式:速度×时间=路程。由此可以列出方程:
解:设汽车从甲地到乙地需要X小时。
X×130=1820
X=1820÷13
X=14
答:汽车从甲地到乙地需要14小时。
2、根据几何公式确定等量关系。
例如:平行四边形的面积是11.2平方米,底是5.6米,它的高是多少米?
等量关系式:底×高=平行四边形的面积,根据这个公式列出方程。
解:设平行四边形的高是X米。
5.6X=11.2
X=11.2÷5.6
X=2
答:平行四边形的高是2米。
3、根据题目中有比较意义的关键句确定等量关系。
类似于这样的找等量关系的题目,是同学错的最多的题目,我让学生分两步做:第一,找出题目中有比较意义的关键句;第二,按照关键句中,文字表述的顺序列出等量关系式。
例1:钢琴的黑键有36个,比白键少16个,白键有多少个?
第一,找出有比较意义的关键句“比白键少16个”,第二,按照关键句中文字描述的顺序,“比白键少”,“ 少”就是“减”,用“白键的个数-16个=黑键的个数”,再根据等量关系式列出方程。
解:设白键有x个。
x-16=36
x=36+16
x=52
答:白键有52个。
例2:一只大象的体重是6吨,正好是一头牛体重的15倍。一头牛的体重是多少吨?
第一,找出找出有比较意义关键句,“正好是一头牛体重的15倍”,第二,按照关键句中文字描述的顺序,“是一头牛体重的.15倍”,看到“……的几倍”,应该用乘法,“一头牛体重×15=一只大象的体重”, 再根据等量关系式列出方程。
解:设一头牛的体重是X吨。
15X=6
X=6÷15
X=0.4
答:一头牛的体重是0.4吨。
另外,还要注意的是,其实每道题目都可以列出三个等量关系式,要提醒学生注意,根据这三个等量关系式,可以列出三个方程,但是,其中有一种方程是X单独在“=”的左边或者单独在“=”的右边,这种情形要避免,因为,如果这样列方程就和算术解法差不多了,方程也就失去了它的意义。
总之,列方程解实际问题只要找出数量间的相等关系,再列式就可以了,等量关系式变化很多,因此方法较多,从不同的角度找出不同的数量关系式,可以列出不同的方程。我觉得对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,选择适合自己的一种方法就可以了,并且要养成良好的检验习惯。
列方程教学反思10
这是一节练习课,我在课的第二部分:列方程解决实际问题作了调整,把相遇问题、追及问题作为本课的重点,其余9、10、11题只在课堂上练了一道,其余两道作为课堂作业。行程问题中相遇问题学生数量关系比较熟悉,学习比较顺利。而我补充的追及问题,学生很生疏,我画线段图给他们看,引导他们说数量关系,他们还是有些茫然,好像结论数量间的相等关系,是我强塞给他们的,而不是他们自己发现的。我后悔不及,应该先请学生演示追的过程,再让他们自己画图,这样肯定弄得明白了。作为弥补,我再请学生演示追的`过程,再次引导说数量间的相等关系。总算勉强通过。
本节课重点是列方程解决实际问题,我重视数量关系的分析,重视列方程解答问题的步骤的训练,学生能够有序思考、有条理地解决问题。但,可能是我一贯的作风节奏慢,我总是要到中下学生心领神会了,我才放心地进入下一环节;也可能是我与这些学生的磨合期还没过,怎样听别人讲、怎样回答问题、怎样讨论,也成了我常说的问题。所以,我常完不成一节课的预定任务,课堂作业常带到课外完成。这个问题我要尽量克服。
想起这节课对追及问题的处理,其实增添这个内容是因为看到《补充习题》上有这类问题,课上不提出来,学生课后解决有困难。转念一想,我在做了一个追及问题之后,最好接着练习一个同类型的问题,这样这个新知识才会学得扎实。
这节课,一个突出的问题:我对追及问题的认识不足,处理不够恰当。究其原因,因为我没有正确把握学情,我不知道学生对这类问题很生疏。我这个一直教老教材的教师,新教材体系我要好好熟悉,学生原有的学习情况,我要及时地了解。
列方程教学反思11
列方程解决实际问题与学生之前学过的算术法解决问题的相同之处都是需要分析数量关系,区别在于思考方法不同,列方程解决实际问题时,把未知数用字母表示和已知数一同参与列式,运用顺向思维列出方程,在解决某些实际问题时有着明显的优势。如:“已知一个数的几倍多(少)几,求这个数”的问题若用算术法解,需逆向思考,思维难度大,用方程解决,思考是顺向的,学生容易理解。
列方程解决问题的难点是找等量关系,在教学中先让学生学会找等量关系,可从以下几个方面训练。
1、引导学生先找出题中的关键句。如“白色皮的`块数比黑色皮的块数的2倍少4块”,引导学生顺着句意把文字叙述‘翻译’成数学语言),很容易写出等量关系:白色皮的块数=黑色皮的块数×2-4。
2、根据学生已经熟练地数量关系确定等量关系。如:速度×时间=路程,单价×数量=总价,工作效率×时间=工作总量。
3、根据几何公式建立等量关系。
总之,列方程解决实际问题只要找出数量间的相等关系,再列方程就可以了,等量关系式变化多,因此方法也多,从不同的角度找出不同的数量关系式,可以列出不同的方程。对于理解水平较弱的学生不能仅仅满足于用方程做出了这道题就可以了,而是要让学生真正认识到用方程解题的优势,并且要养成良好的检验习
列方程教学反思12
1、请学生估计一下,我们的教学楼有多高?(学生回答大概12米,有的说10米)板书:10米。
2、出题:教学楼的高度比后面专用教室的高度的3倍还多1米?你们知道后面的教学楼大概有多高?
讨论:教学楼的高度和后面专用教室的高度有什么关系?
生1:教学楼的高度是后面专用教室的高度的3倍还多1米
生2:教学楼的高度比后面专用教室的高度的3倍多
生3:教学楼的高度比后面专用教室的高度高得多。
2、 启发:教学楼的高度和后面专用教室的高度是不相等的,你能找出他们之间的相等的数量关系吗?
学生交流讨论:
生4:10米减去1米,再除以3,等于3米。检验一下是对的。
生5;后面专用教室的高度*3+1米=10米
3、 列方程
4、 解方程
反思:
列方程应用题大概步骤大家都知道:是在顺向思维的基础上,找出相等的'数量关系,设出未知数列出方程,然后进行解方程。其重点是列方程,难点是找出相等的数量关系。本节课也真是在这样的思路下进行教学的。有几个体会值得注意:1、为什么要列方程来解题,学生不知所以然,其实正如上面的生4的回答。也是可以的,但用方程可以降低思维的难度,为今后的代数打好底子。2、本节课教材上的内容比较简单,是西安的大雁塔和小雁塔的高度比较,和我的举例差不多。在传统的教学中我们通常用线段图等形象的方法帮助学生理解题目中的相等关系。在今天的课堂上我没有涉及。在让学生找相等的数量关系时我给学生示范了一个文字分析法,比如:分析教学楼的高度比后教室的高度的3倍还多1米这句话,就可以这样转换成数学语言 教学楼的高度比后面专用教室的高度的3倍还多1米
就是教学楼的高度=后教室的高度*3倍还+1米或者等号两边对调:
后教室的高度*3倍还+1米 =教学楼的高度
这样的效果果然很好,起码让学生怎么找数量间的相等关系。只是觉得后进生可能会不动脑筋,只会望文生义,没有真正弄懂数量关系。3、本节课还有一个不容忽视的地方就是要让学生养成勤于检验的好习惯。
列方程教学反思13
今天学习了《列方程解决实际问题》,学生经历列方程解决一步计算的实际问题的学习过程,在练习中学生对列方程解决实际问题的一般步骤和方法掌握不太好。
本节课我重视学生对数量关系的理解和列方程与数量关系的.对应的方程。如:例7的数量关系:小军的成绩-小刚的成绩=0.06米,对应的方程是x-1.39=0.06,如果数量关系:小军的成绩-0.06米=小刚的成绩,对应的方程是x-0.06=1.39。
本节课学生设未知数x的后面单位名称会丢掉。在本节课教学中使用的数量关系,实际上就是以前的“…比…多…”和“…比…少…”应用题的数量关系,数量关系:大数-小数=差,大数-差=小数,差+小数=大数。
列方程教学反思14
例6是这个单元比较难的内容,它集中了单位“1”未知和多(或少)百分之几两大知识点在内,上学期求单位“1”的方程,只学了单位“1”未知时求多(或少)多少的一步方程。所以这一知识点还是有难度的,难在找数量关系式。学生不太习惯从“比九月份节约20%”这样的条件中找数量关系式,虽然这一条件上学期已经常分析,但是主要是应用“九月份用水量×20%=十月份比九月份节约的用水量”,而本例题确要利用这一关系句和线段图找出“九月分用水量-十月份比九月份节约的用水量=十月分用水量”,因而这是此例的难点所在。
今天教学了这一课的内容,从学生的学习情况来看,找单位“1”的量学生是没问题的,主要是数量关系式有一部分学生还是掌握得不好。
练习四的第6、8、9两题我是让学生在课堂上完成的,第六题形同例题,仅有3个孩子解答不正确。第八题正如我所料,错的学生不少。先让学生自己独立完成,再集体交流。单位“1”的量是已知的,用乘法;单位“1”的量是未知的,用解方程或除法。第9题的第(1)个问题学生错的'较多,尽管在例题和做练一练的时候已经强调多的量或少的量,但做这题的时候有一部分学生还是不会把10%X与节约的量对应起来,学得不够灵活。
列方程教学反思15
教学目标:
1.熟练掌握基本等量关系
2.会解应用题(方程法)
教学重点: 熟练掌握基本等量关系
教学难点:会解应用题(方程法)
教学过程:
一、复习旧知,导入新课
师:前一段时间我们学习了用方程解应用题,今天继续学习列方程解应用题,列方程解应用题教案及教学反思。(课题出示)
1、根据关键句找出等量关系 甲车比乙车每小时少行8千米。 等量关系:(个别说)
2、根据题意找出等量关系 李师傅比徒弟每小时多加工零件10个,李师傅每小时加工零件45个,徒弟每小时加工零件多少个? 等量关系:(同桌互说等量关系)
二、自我探究,掌握新知
1、教学例6 李师傅比徒弟每小时多加工零件10个,李师傅4小时加工零件180个,徒弟每小时加工零件多少个? A:请你思考题目的等量关系并列出方程进行解答。 B:学生汇报。 C:再用算术法解答并口述等量关系。
2、独立练习 每箱桔子价钱比苹果少15元,学校买30箱桔子共用去930元,每箱苹果多少元?
要求:(1)用两种方法解(算术法、方程法) (2)同桌交流解题思考过程 学生汇报。 师:现在老师也来列一个方程请你们判断一下是否正确。(讨论交流) (X-15)× 30 = 930橘子单价×数量=橘子总价 师:刚才我们通过不同的等量关系列出了几种解题的式子,一道题目有多种做法只要我们积极动脑就会想出多种方法来解题,教案《列方程解应用题教案及教学反思》。
三、巩固新知,逐步熟练
选择题:(选出正确的编号填在括号内)
1、一个服装厂要生产31200件衣服,原计划每天生产220件,实际120天就完成了任务。实际每天比计划多生产多少件?(B、C、D) A:31200÷220-X=120B:31200÷(X+220)=120C:31200÷120-220=X D:(X+220)×120=31200 师:为什么A是错的?
2、小芳和小李合打一本书,小芳4小时打了5000个字恰好是书的一半,小芳平均每小时比小李多打250个字,小李打完另一半需要几小时?解:设小李打完另一半需要X小时。(A、C) A:5000÷X=5000÷4-250B:250+X=5000÷4C:(5000÷4-250)X=5000D:(5000÷4-250)X=5000×2
师:为什么一半乘以2不对呢?
3、一艘轮船和一艘快艇同时从甲地开往乙地全程960千米,快艇的速度比轮船快90千米/小时,它8小时正好到达乙地,那么这时轮船行了多少千米?
师:同桌可以互相讨论交流一下你找到的等量关系是什么?请你从中选择一条等量关系列出式子。(我们比一比看看谁的方法多)
四、课堂总结:
你觉得列方程解应用题要注意什么?或者你认为什么比较重要?
五、拓展题:
鸡与兔共有100只,兔的脚比鸡的脚多40只,求鸡与兔各有多少只?
教学反思:
本节课的教学中以开门见山任务式的形式开头,使学生对本节课的教学任务比较明确。在教学的过程中对教材的重难点把握较准确,并且能注意化解难点形成坡度使学生更容易接受。同时引导学生可以用不同的等量关系来思考同一道题目,这也就是一题多解思想的渗透。练习设计中有层次,选择题的`答案有针对性(平时学生容易错的情况)。
值得注意的是:在模拟练习中所用去的时间较多,这一环节还应该更加紧凑。一题多解思想的渗透在例6的教学中就可以进行。
【列方程教学反思】相关文章:
《列方程解决实际问题》教学反思03-30
《列方程解决实际问题》教学反思03-31
《列方程解决简单的实际问题》教学反思04-12
列方程解决简单的实际问题教学反思04-05
《列方程解决实际问题》教学反思(15篇)09-03
《列方程解决实际问题》教学反思15篇06-17
列方程解决简单的实际问题教学反思3篇04-16
教学教学反思03-22
秋天反思教学反思03-04