《梯形的面积》教学反思

时间:2023-03-17 12:11:36 教学反思 我要投稿

《梯形的面积》教学反思

  身为一位到岗不久的教师,课堂教学是重要的任务之一,借助教学反思可以快速提升我们的教学能力,快来参考教学反思是怎么写的吧!下面是小编整理的《梯形的面积》教学反思,希望对大家有所帮助。

《梯形的面积》教学反思

《梯形的面积》教学反思1

  您现在正在阅读的四年级数学《梯形的面积计算》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!四年级数学《梯形的面积计算》教学反思今天上了《梯形的面积计算》这节课,反思整堂课的教学,自我感觉较为满意的是,突出了以下几个方面:

  一、体现了探究性教学的特点。

  《数学课程标准》指出:有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。本课的教学应该说较好地落实了这一理念:充分让学生动手实践用学具剪剪拼拼,进行了自主探索,并在形式上响应地组织了小组合作交流。体现了探究性教学的特点。具体在教学中的体现如下:

  放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。在这一环节中,学生出现了多种操作方法,如:一部分学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;一部分学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;还有一部分学生用一个梯形沿梯形的右上角到对腰的中点剪下,翻转180度,拼成一个三角形,推导出面积公式。这样的教学正好落实了《标准》提出的数学教学要在学生已有的知识背景下学习的理念。尤其突出的是充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了学生是学习的主人,教师是组织者、引导者和参与者。发展了学生的创新能力。值得指出的是:这当中还蕴含了数学思想方法的教学:让学生把陌生的知识自主地转化为已有的知识经验,体现了迁移、转化思想。经过课堂小结的点拨,使得这一教学效果尤其明显。

  二、体现数学与生活的联系

  首先,在导课时,创设了请学生帮老师计算电脑桌侧面梯形板的面积多少的问题情境,不仅有效提出了数学问题的,同时还激发了学生求知的愿望。其次,创设应用探索出来的方法解决实际生活中的问题。主要是通过解决一些生活中的梯形的面积来实现的。课堂上我依据学生的心理特点,做到了《标准》对于情景的创设要联系学生的.生活实际的要求。在这一前提下让学生进行探究,是水到渠成,显示了学习的自主性。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学来源于生活,回归于生活的思想。

  三、体现练习的层次性

  练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。

  反思整个课堂教学过程,还是存在着许多问题:

  一、小组合作的成效性不高。

  这可以从课堂教学中的两个地方看出来:一是在学生进行独立探究时,学生基本上已经有了将梯形转化为平行四边形和长方形这两种转化方法,但是小组代表上来向全班交流时却只说了一种转化方法(另一种是另外的同学补充的)。难道他们组就这一种?还是他只说了自己的方法,而没有交流到本组其他同学的方法?第二点是在小组操作交流时,总有个别学生,自己玩自己的,不愿与人合作交流,可能是小组的分工不够明确,学生合作的欲望未被调动起来。这么看来,显然课堂上组织学生进行的小组合作交流的成效性是相当不理想的!那么如何进行改进呢?我想主要在课堂上教师还是应该进行更多地巡视,更多地参与到学生的学习中去!在学生思维停滞住时适时的加以点拨,鼓励所有学生参与讨论、参与探究。充分体现课堂上教师的主导作用。

  二、缺少学生之间的互动。

  《数学课程标准》明确指出,数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。这也符合交流应该多元化的现代教学观。说到这里,不由想起了许多名师的课,互动性强在他们的课堂上是多么地突出!反思本课的教学,就这方面来说还是存在明显不足的。课例中,在学生向全班汇报了转化过程及计算方法后,教师就说:老师请教你,为什么后面还要除以2呢?其实这里老师操之过急了,同时也是大可不必为之的。老师完全可以问学生:听了他的汇报演讲,你们有没有问题请教他?或者考考他呢?让学生来问这个问题,这样不但培养了学生提问题的能力与意识,给了学生一个发展思维水平的良机,而且很自然地形成了生生交流的良好的课堂学习氛围,多好!

  三、放手的度不够

  虽然本堂课的教学与以前传统教学方法在很大程度上有了改进。但还不够精彩的一个主要原因,我想是放得还不够。主要体现在:

  小组合作操作、填写实验报告单时,报告单的设计最后一栏,若能不暗示,让学生自己去发现,课堂将更多生成的东西。会使整堂课更加的精彩。说到底,在教学理念上,我们接受了课程改革新思想的洗礼,有了很大的进步,但在实际教学中,却很难做到,总有这样那样的顾虑。因此,在课堂教学中如何放,放的度如何把握,这是我们将要继续探索的问题。

《梯形的面积》教学反思2

  《梯形的面积》五年级数学上册教学案例分析及反思“梯形的面积”是在学生认识了梯形特征,掌握平行四边形、三角形面积的计算,并形成一定空间观念的基础上进行教学的。因此,教材没有安排用数方格的方法求梯形的面积,而直接给出一个梯形,引导学生想,怎样仿照求三角形面积的方法把梯形转化为已学过的图形来计算它的面积。让学生在自主参与探索的过程中,发现并掌握梯形的面积计算方法,让学生在数学的再创造过程中实现对新知的意义建构,解决新问题,获得新发展。

  这节课我从学生的生活实际问题出发,一开始我就让学生感受到学习梯形面积计算的必要性,从而引发学生探究梯形面积的学习欲望。在这种强烈的学习欲望下,学生调动自己已有的知识经验,探究出了很多种方法,自己解决了数学问题,体验到了收获的快乐,既培养了创新思维能力,又增强了自主学习的能力。当然,由于学生在探索中出现多种方法,因此,整节课就显得十分地紧张,有些推导的方法也不够让学生进行深入的交流。

  《数学课程标准》指出:动手实践、自主探索与合作交流是学生学习数学的重要方式,本课的教学应该说较好地落实了这一理念。具体体现在:

  1.学习方式的变化是本节课最突出的一个特点。如:在“探索新知”这一环节中,改变了过去由教师讲解、代替学生操作的传统教学方式。通过“动手实践—小组内交流—选择可行的方法”这样三个步骤,完成了转化和归纳的全过程。突出体现了“学生是学习的主人”这一新理念。充分调动了学生学习的主动性,激发了学生探究的欲望。使学生在不断地探索、合作、交流中经历了知识的形成与发展的全过程,并从中体会到了探究所带来的乐趣。

  2.第二个突出的特点是把所学知识与实际生活紧密联系起来。如练习题的设计就突出体现了这一点。通过计算学生比较熟悉的'篮球场中的罚球区图形的面积,某些汽车侧面的玻璃面积等实际生活中的问题,使学生体会到数学与生活的联系。培养了学生用数学眼光认识事物,应用数学的意识,从而进一步体会数学的应用价值。

  不足之处:学生手中的梯形学具应具有多样性(大小不同;大小相同;形状不同;形状相同),让学生在动手操作转化的过程中去体会:“两个完全一样的梯形”这一条件的重要性。

《梯形的面积》教学反思3

  《梯形的面积计算》教学反思:

  在学生独立思考,自主探究的基础上,组织学生进行合作交流,这是本节课的重点环节。在教学中,我放手让学生从自己的思维实际出发给学生充分的思考时间,对问题进行独立探索、讨论、交流,学生充发展示自己或正确或错误的思维过程。在合作交流中互相启发,共同发展。在此过程中,我只是组织者、指导者,起到了帮助和促进的作用,充分发挥学生的主动性,积极性和首创精神,最终达到使学生有效的实现对当前所学知识的意义建构的目的。

  1、以学生自主学习为主教师为辅的课堂教学理念。

  考虑到学生已有了平行四边形、三角形面积计算公式推导方法的经验,本节课在教学思路上是淡化教师教的痕迹,突出学生学的过程。为学生创设一种“猜想”的学习情景,让学生凭借已有经验大胆猜想,进而是实践检验猜想成为学生自身的需要,使运用科学探究的方法进行探究学习成为可能。这比起盲目的乱猜来,更能激起学生的探究欲,学生的思维更有深度。

  2、以学生的活动为主。实现生生互动。

  本节课力求让学生自己去发现和概括梯形的面积公式。使学生在分析,对比中归纳选优;在探究的过程中发展学生思维的创造性。为了达到这一目的,让学生动手操作,分组合作探究,初步概括出梯形的面积公式。这样,通过“拼、说”的活动过程,让学生在活动中发现,活动中体验,活动中发散,活动中发展。同时,又由于各项活动的设计环环相扣,步步深入,不仅激发了学生探究学习的兴趣,同时学生思维深度和广度也得到了有效的.培养。

  3、使学生的自主探索在时间上给以保证

  本节课一系列活动的设计为了学生充足地用眼看,用手做,用耳听,用嘴说,用脑想的时间和空间,让学生尽情的表现,发展自己,每一位学生都在亲自实践中认识理解了新知。充分体现了教师指导者,参与者的作用。当学生受现有知识的制约,推导概括公式思维停滞时,教师实施点拨诱导,促其思维顺畅,变通,最后使学生明确,尽管拼摆的方法不同,但都达到验证了梯形的面积公式。将发散与收敛,直觉和逻辑这种对立统一的思维方式有机的融为主体动态式的思维结构,从而最大限度的扩展其具有张力的思维空间。

《梯形的面积》教学反思4

  《梯形的面积》是在学生学习了长方形、平行四边形及三角形的面积计算后安排的教学内容。学生已通过操作、实验、探索等积累了探讨平面图形面积计算公式的基本方法与策略(即剪、移、转、拼等),并初步领悟了“新旧转化”的数学思想方法,教材如此安排的目的是希望学生在探索活动中不仅巩固这种思考问题的方法,而且能初步形成这种思考问题的习惯,因此,本节课的重点,仍放在帮助学生形成思考问题的习惯上。

  一、复习旧知,引入新知

  本节课首先让学生回顾上几节课的内容:长方形的面积公式,平行四边形的面积公式和三角形的面积公式。在复习过程中让学生容易将转化的方法迁移到这节课来。

  二、推导梯形的.面积公式

  梯形的面积公式的推导有多种方法,比如两个相同的梯形拼接成一个平形四边形,从一个梯形的对角线剪开,成两个三角形,还有从梯形的中位线剪开后拼成平行四边形等到。我鼓励学生在自主探索的基础上进行汇报和交流,让学生在交流中明确是利用转化的思想把梯形转化成已知的图形来推导的思想,并培养学生观察、操作、比较、推理等逻辑思维能力与初步的假设、实验、验证等科学探究能力。

  三、在练习中巩固提高

  本节课的练习既有直接运用公式计算的简单运用,又有等积变形的思考,还有计算垒成梯形的圆木的根数。对于计算圆木的根数,有些学生是层层计算解决,有些学生把这堆圆木的横截面转化成一个梯形,运用梯形面积公式来解决,在交流中让学生认识运用梯形面积来计算的方便性。

《梯形的面积》教学反思5

  梯形面积的计算是在学生学会计算平行四边形、三角形面积计算的基础上教学的。教材先复习梯形的有关知识,然后引导学生想,怎样把梯形转化为已学过的图形,从而推导出梯形的面积计算公式。其中理解梯形面积计算公式的推导过程是本节课教学的难点。

  下面就从以下几个方面进行剖析:

  (一)以旧促新,探究新知

  1、出示梯形请学生找出梯形的上底、下底和高,然后请学生想一想:我们在推导平行四边形、三角形面积计算公式的时候,都用到了什么方法?带领学生回顾以前知识,(把一个平行四边形进行割补转化成一个长方形,推导出平行四边形的面积计算公式;把两个完全一样的三角形拼成一个平行四边形推导出三角形的面积计算公式。)使学生明确都用到了转化的方法。然后教师启发:我们能否也用转化的方法来推导梯形面积的计算公式呢?下面我们就来共同研究、探讨。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,用循序渐进的启发性提问,培养学生的发散思维。促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立非人为的实质性联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造条件。

  2、推导梯形的面积计算公式。

  在引导学生进行操作时,我先课件显示操作提纲:1、拿出两个完全一样的梯形动手拼一拼。2、你拼成了什么图形?怎样拼的?3、你发现拼成的平行四边形和梯形之间有什么关系?让学生带着教师提出的问题一边思考,一边动手,防止出现学生不知道做什么的现象。然后学生示范拼图,用两个完全一样的梯形拼成一个平行四边形。由于学生操作的两个完全相等的梯形是等腰梯形,因此未出现异常现象,学生都兴奋地说拼成了平行四边形。为了加深学生对书本图示的理解,我故意剪了两个完全相等的任意梯形,结果问题就出现了,一名学生没有按照书本上的拼法,结果自然没有拼成平行四边形,学生都感到惊讶。我见时机成熟,叫学生再打开书本,仔细观察书上的拼法,使学生明确拼的步骤:即先要重合,再向左旋转,最后沿着梯形的一条边向上平移,直至两条底成一条直线,才能拼成。学生这才明白过来。通过动手操作,同学们都明确了两个完全相同的梯形能拼成一个平行四边形。

  接下来根据拼成的平行四边形,请学生一边看图一边找关系,先找出平行四边形的底与梯形的底之间的关系,即拼成的平行四边形底是梯形上底和下底之和,再找出梯形的高与拼成的平行四边形的高的关系,即拼成的平行四边形的.高是梯形的高,然后得出梯形面积与拼成的平行四边形面积之间的关系,即梯形面积是拼成的平行四边形面积的一半,最后得出梯形的面积计算公式及字母公式。

  本环节的设计,从学生实际出发,设计了相应的填空题,使研究的要求清楚,目的明确,有利于学生有效、有序地进行思维。

  (二)学以致用。

  在例题的教学中,由于有前面平行四边形、三角形面积计算的基础,因此我没有花很多的精力,而是先出示例题,让学生自己尝试解答,充分发挥了学生的主观能动性。在练习的设计中,我也能从学生实际出发,选择学生中有可能出现错误的列式,让学生选择正确答案,从而杜绝错误现象。为了让学有余力的学生能吃得饱,我又布置了一些拓展题,。让学生尝试用不同的方法得出梯形面积的推导公式。(用一个梯形拼一个平行四边形,然后推导梯形面积的计算公式)

  总之,本堂课能以全体学生为本,从教学形式和教学方法上有了较大的更新。通过让学生操作、思考、观察、讨论、说理、计算、看书和概括等多种形式,注意了变 "教师讲授"为"研究交流",变"灌输"为"引导",较好地处理了"主体"和"主导"的关系,有利于培养学生学会学习,学会创造的良好素质。

《梯形的面积》教学反思6

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,明白要利用转化法将梯形转化成我们已经学过的图形来求面积。

  在学习推导梯形面积计算公式之初,先让学生做两个一样的梯形;在做的过程中,学生便明白了梯形的特征:只有一组对边平行的四边形。然后让学生回忆已学过的.平行四边形和三角形面积的推导过程,说说可以把梯形转化成已经学过的什么图形?并让学生在练习本上画一画。在这个环节上,有不少学生画出来了,但不知道要怎么推导。这也反映出了学生水平的差异性。在梯形面积的推导上,我让学生采用一个梯形和两个梯形来求。

  用一个梯形来求时,学生大部分能将其分割成一个平行四边形和一个三角形;但在推导过程中由于有些知识他们没学导致推不到底。当分割成两个三角形时学生都能理解。用一个梯形来推导公式理解之后,我又让学生用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?(这一部分主要是通过设计导学提纲来实行的)通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  学生公式是推导出来了,但由于我没敢完全放手,在有些环节上是我领着学生做的,(比如说用两个梯形拼图形,应该让学生自己思考用两个什么样的梯形,学生自己动手做一做;在三角形的基础上,学生自己得出是两个完全一样的梯形)所以在后面的练习中,还是有些孩子总是忘除以2。虽然问他梯形的面积公式时可以答的很好,但做题时就出现了情况。这还需要让学生多练,多动手操作,从真正意义上明白多边形的面积公式是怎么推导出来的。

《梯形的面积》教学反思7

  片段一:关注学生思考方法的多样化。

  在讨论梯形的面积计算公式的时候,如,将梯形转化成其他图形的时候,各个小组发挥集体的智慧,想出了很多种方法。

  师:下面我们一起来交流一下各小组的方法。

  生1:我们小组用两个完全一样的梯形拼成一个平行四边形,平行四边形的面积我们以前学过,所以这是我们小组想的。

  师:说得真好,哪个小组还有不同的想法?

  生2:我们小组通过将梯形沿着对角线剪下来,分成两个三角形。

  师:哪个小组的同学愿意起来评价一下他们小组的想法?

  生3:我认为这个方法好是好,不过转化后的图形的面积怎么求啊?

  师:对啊,你们小组能帮忙解答么?(老师要有一种装不明白的精神,激发学生好奇心和挑战欲)

  生4:我们小组认为,虽然分成了两个三角形,它们形状不同,但是它们的高是一样的。根据我们刚刚学过的三角形计算公式可以求出。(其他小组的学生在这位小老师的提示下明白了)

  师:看看学生经过奇思妙想,想出了这么多的好方法,还有不同方法吗?

  这时其他小组的学生争先恐后地介绍各小组的方法,有的用对折的方法,有的用剪拼的方法,真是八仙过海,各显神通。老师惊喜地发现,学生在推导梯形面积的过程中同时强化了转化的数学思想。

  片段二:利用转化思想拓展教学视野,建立数学模型。

  在本节课的拓展练习上,我是这样处理的:

  已知等腰梯形上、下底的和是10cm,高6cm,求梯形的面积?想象一下,如果这个梯形的高还是6cm,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?

  师:恩,这位同学非常灵活地运用公式解决这一个问题,想象一下,如果这个梯形的高不变,如果要画出面积是30平方厘米的梯形,它的形状会是怎样的呢?你估计它的上底和下底会是多少?

  (在思考画出新图形的环节上学生遇到了困难,不知道从哪下手。沉思片刻有个女孩举手了)

  师:你来说说看,梯形的上底和下底可能会是多少?

  生1:上底4 cm下底6 cm。

  (这时学生的热情瞬时被点燃,个个举高小手抢答下面可能会出现的情况)

  生2:上底3 cm下底7 cm。

  生3:上底2 cm下底8 cm,上底1 cm下底9 cm,上底0。5 cm下底9。5 cm。

  师:如果继续往右走你想最终会变成一个什么图形?

  生:三角形。

  师:如果从一开始往左走,你想会变成一个什么图形?

  生:长方形。

  师:恩,也是特殊的一种平行四边形。

  生2:哎,老师,我发现了一个问题。

  师:孩子你说。

  生3:老师我还有一点补充,在这个变化过程中,虽然面积都相等,但是各个图形的形状却不相同

  师:讲得真好。对呀,这就是我们数学上的一种重要的变化规律:叫等积变形。看你们多么厉害,发现了这么多规律,真了不起,老师真佩服你们的思维。

  师:通过我们刚才想象的过程,原来梯形的.面积、三角形的面积、平行四边形的面积,它们通过变化是否可能存在一定的联系呢?到底有怎样的联系呢?今后我们继续研究。

  通过这道练习题,帮助学生对本单元学过的平行四边形、三角形、梯形之间建立多边形之间的联系,建立平面图形的数学模型:

  梯形面积的一般公式是:S=(a+b)h÷2

  当b=0的时候,这个式子就变成s=ah÷2,即成为三角形的面积公式;

  当b=a的时候,这个式子就变成s=(a+a)h÷2,也就是s=ah,即成为平行四边形的面积公式。

  学生经历了这个过程,能比较直观地感受到多边形之间的联系。

  【案例反思】

  (一)把错误当成宝贵资源

  课堂上我充分利用学生的现实资源组织学生深入学习。如果学生课堂上出现了错误或困难,我更是珍惜这些错误的生成性资源,并给予及时的点拨指导,实现柳暗花明的效果。例如在探讨两个三角形的面积计算公式的时候,有的学生往往找不出转化后的三角形的两个高相等,特别是找钝角三角形的高时,容易出错或出现困难,这个时候我会及时点拨:如果是这个以梯形的上底为底边的三角形,你能找到它的高吗?这时很多学生会会心地点头,进而继续深入思考,发现两个三角形高之间的相等关系。

  (二)合作学习

  现在的学生一般都是独生子女,自尊心、自我意识强,与人合作交往的能力不高。为此,教学中我创设情境,让学生在不断交流与合作、不断相互帮助与支持中,感受合作交流的快乐与成功;让学生在合作交流中自由地发表个人的见解,通过集思广益,促进认知的发展。这样,既利于调动起全体学生参与到学习的全过程,又利于培养学生团结协作和社会交往能力。我认为,在教学过程中,在学生遇到有争议性或疑惑的问题时,安排适当的时间让学生合作交流是非常必要的。本节课,在认识转化后的图形的高的时候,大家就出现了争议,有的认为两个图形的高相等,有的认为转化后的图形的高是原来图形的一半,此时我就安排了小组交流,小组中的每个成员充分发表意见,进而完善认识。

《梯形的面积》教学反思8

  教学内容:

  教科书88页和89页

  教学目标:

  (1)探究梯形面积计算,理解公式的推 导过程,会应用公式正确计算梯形的面积。

  (2)培养学生合作学习的能力以及动手操作能力。

  (3)进一步渗透旋转、平移的数学思想。

  教学重点:理解并掌握梯形面积公式的计算方法。

  教学难点:理解梯形面积公式的推导过程。

  教具准备:多媒体课件

  教学过程:

  一、创设情境,引出问题

  教师用多媒体课出示:王大爷家有一块果园地(梯形地上底300米,下底200米,高100米),如果每棵桃树占地10平方米,那么王大爷家这块果园地里一共有多少棵桃树?

  问:同学们这块地是什么图形啊?

  生1:这是一个梯形。

  问:要想求果园地里一共有多少棵桃树,必须先知道什么呢?

  生2:必须先知道梯形的面积。

  师:今天我们这节课就来研究“梯形面积的计算”(板书)。

  二、探究新知。

  (1)、铺垫孕伏。

  组织学生回忆平行四边形、三角形面积公式推导的方法及过程,

  重点突出旋转、平移、割补的数学思想。

  (2)、协作研讨,探求方法

  1、教师把学生分成若干个小组,每个小组4至6名学生,每个小组发给若干张梯形纸(上底3厘米,下底5厘米,高4厘米)。

  师:谁能介绍一下这个梯形?

  生3:这个梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:下面我们各小组利用手中的工具来探究梯形面积的计算公式,看哪个小组的方法最多!哪个小组协作能力最强!

  2、教师用课件出示探究要注意的事项,让学生进行小组合作,动手操作,探究梯形面积的计算。(教师注意合作方法的指导,要求同学之间互相交流、合作,把梯形面积的计算方法小组汇报给同学听,把计算过程写在本子上,最后推荐代表进行汇报。每一次汇报,教师利用多媒体演示、小结。)

  生4: (3+5)42=16(平方厘米)

  生5: 542+342=16(平方厘米)

  生6: (5+3)42=16(平方厘米)

  生7: (5-3)42+34=16(平方厘米)

  生8: (5+3)(42)=16(平方厘米)

  生9: (3+5)24=16(平方厘米)

  生10: 34+(5-3)42=16(平方厘米)

  师生交流、点评……

  3、总结规律,渗透数学思想方法

  师:这些方法有什么共同的地方吗?

  生11:结果都是16平方厘米。

  生12:每种方法的计算过程中都用到3、4、5、2这几个数字。

  师:这几个数字和梯形有什么关系吗?

  生13:梯形的上底是3厘米,下底是5厘米,高是4厘米。

  师:现在谁能猜一猜梯形的面积计算公式是怎样的?

  生14:梯形的面积=(上底+下底)高2

  师:如果用字母S表示梯形的面积,a表示梯形的上底,b表示梯形的下底,h表示梯形的高,那么梯形的面积计算公式用字母怎样表示?

  生15:S=(a+b)h2

  三、应用知识,解决问题

  1、回到课堂初提出的问题,让学生帮王大爷计算果园地里一共有多少棵桃树。

  生16:(300+200)100210=2500(棵)

  2、学生完成基础变式练习:“做一做”和练习十八的1~3题。

  3、提高能力练习:共同探讨练习十八的第四题。

  四、知识小结,体验学习的快乐!

  教学反思:

  新的数学课程标准指出:教师不只做教材忠实的实施者,而应该做教材的开发者和建设者,教材的教育价值和智力价值能否得到充分发挥,关键在与教师对教材的把握。《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。为了充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他们成为知识的发现者、创造者,培养学生自我探究和实践能力。这节课上完以后我觉得有成功,也有一些不足:

  一、动手操作,培养探索能力

  在推导梯形面积计算公式时,安排学生合作学习,放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,自主从不同的途径探索出梯形的面积计算方法。首先让学生说说可以把梯形转化成已经学过的什么图形?用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,达成了教学目的。

  二、发散验证培养解决问题的能力

  在学生验证自己的想法是否正确时,鼓励学生大胆地表达自己的想法,以说促思,开启学生思维的“闸门”,引导学生说一说,议一议,互相交流,达成共识。在此基础上让学生归纳出梯形面积的计算方法。通过“拼、剪、说”的活动过程,让学生在活动中发散,在活动中发展,学得主动、扎实,更重要的是培养了学生求异思维、创造能力和解决实际问题的能力。在本课教学中,我比较注重培养学生的推理、操作探究及自主学习的能力。学生在拼一拼、剪一剪以及推理归纳的学习过程中,多种感观参与学习,既理解、掌握了梯形的有关知识,同时又培养了学生获取知识的能力。反思整个课堂教学过程,还是存在着一些问题。首先缺少学生之间的互动。数学课是数学活动的教学。这个活动不仅仅表现在学生的动手操作上,更重要的还应该表现在师生之间、学生之间的多向互动上。反思本课的教学,在学生向全班汇报了转化过程及计算方法后,急于展示自己学习成果的同学与老师展开了一对一的交流,老师忽视了对其他学生的`关注。这样不利于培养了学生与学生之间提问题的能力与意识,不利于形成了生生交流的良好的课堂学习氛围,再有这节课在把梯形转化成各种三角形、平行四边形方法很多,学生的很多想法出乎我的预设,问题就是在黑板上展示多种方案中,从原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从试教的实际效果上看,学生还是最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我觉得课堂中反问和追问的艺术很值得研究,从教学语言可以窥出一个教师调控课堂有效展开的功力,然而,我却发现现在的我却在教学语言上显得贫瘠繁琐,尤其是这些空间图形的课堂。教学活动是否有效展开往往会成为评定一堂课是否精彩的重要筹码。纵观整堂课,我一直在思考:如何才能让活动探究得更加有效?活动的时间如何控制?这些还是我要亟待改造的地方。

《梯形的面积》教学反思9

  一、注重有关知识、方法的复习,为梯形面积公式的理解和运用做好充分的准备。

  在复习引入环节,让学生会议平行四边形、三角形、梯形的面积公式的推导过程,感受梯形面积与它的上底、下底和高有关系,为学生计算梯形的面积做好认知准备,有利于他们利用已有知识推动新知学习。

  二、充分发挥学生的主题作用,让学生自主运用梯形面积计算公式。

  在学生运用梯形面积公式的活动中,充分发挥学生的主体性,让他们以小组为单位,通过学具的割补、拼摆,共同探索将梯形转化成会计算面积的`平行四边形或三角形各种办法。在展示汇报中,一方面让学生进行全班**流,使学生感受到应用梯形面积计算公式的不同方法,另一方面,使学生从各种的方法中,发现相同的地方,从而熟练运用梯形面积的计算公式。

  三、尝试运用与练习反馈相结合,促使学生对梯形面积计算的掌握和解决问题能力的培养。

  在出示梯形面积公式后,为了让学生能更好地运用公式计算梯形的面积,培养学生解决简单实际问题的能力,在教学中,先创设情境,让学生在情境中感受到梯形面积计算在现实生活的实用性,通过情境促使他们对问题的理解,最后才让学生独立进行计算。在反馈练习中,把教师的指导和学生的独立练习结合起来,既提高了练习的有效性,又培养了学生运用知识解决数学问题的能力。

  不足之处:

  在计算过程中,一些学生由于粗心,出现了一些错误。还有个别学生出现漏算、多算的现象。今后还应重点培养学生灵活运用知识的能力。

《梯形的面积》教学反思10

  备课时大刀拓斧

  备课的过程是对教学内容挖掘,对学生探索,以及两者之间的融合过程。针对青岛版四年级下册34-35页梯形的特征和面积这一部分内容,备课时我反复思考是分两课时还是一课时呢?学生能否在一节课35分钟的时间既能真正理解梯形的特征又能推导出梯形的面积公式呢?由于学生已经掌握了四边形、长方形、正方形和平行四边形的基本特征,学会了用数格子的方法学习长方形、正方形和平行四边形的面积,在三角形面积计算公式的学习中掌握了通过图形转化来推导的方法,形成了一定的解决问题的能力。所以,我大胆的设计为一节课的教学内容。

  上课时大胆放手

  《新课程标准》指出:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。因此,我上课时大胆放手。

  1、设计了一系列的探究活动、让学生在想、说、练、议、评等过程中复习旧知,学习新知。掌握梯形的基本特征。这些都有利于拓宽学生的思维空间,提高学生的合作探究能力和知识迁移能力。

  2、尊重学生的个性发展,允许学生在学具中任意选择不同的梯形,或拼摆、或割补成已学图形,让学生自己在操作的.过程中去观察、探索、发现、领悟转化的数学思想,获取数学知识。

  在操作、观察、分析、讨论、概括、归纳这一系列的数学活动中,学生亲历了一个知识再创造的过程,体验到成功的喜悦。

  课后细细推敲,努力提升

  具体操作时,因我理念不到位,素质有待提高,有成功的地方,也有失败的环节。

  1、对学生的评价形式单一,重点关注了学生数学学习的水平,没有足够重视学生在数学活动中所表现出来的情感与态度。

  2、教学语言不够简练,特别是指导学生探究时总是担心学生不会,反复强调;缺乏感染力,特别是面对陌生的学生没能及时进入角色。

《梯形的面积》教学反思11

  本节课的内容是在学生学习了平行四边形的面积、三角形的面积以及梯形的图形特征基础上进行教学的。在前面的学习中,学生已经能够通过拼摆独立推导出图形的面积计算公式,初步领悟了图形转化的数学思想。

  成功之处:

  多种方法推导梯形的面积,发挥学生的创造力。在教学中首先让学生用自己准备的两个完全一样的梯形通过拼摆,独立推导梯形的面积计算公式,即用两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是所拼成的平行四边形面积的一半,平行四边形的底等于梯形的上底与下底的和,所以梯形的面积=(上底+下底)×高÷2。然后让学生思考能不能根据一个梯形进行面积公式的`推导呢?从而得出以下几种方法:

  (1)把梯形剪成一个平行四边形和一个三角形,梯形的面积=平行四边形的面积+三角形的面积。

  (2)把梯形剪成两个三角形,梯形的面积=两个三角形的面积之和。

  在这个环节中,教师放手让学生去实践、去探索,学生在探索梯形面积的过程中,不仅掌握了梯形的面积计算公式,理解了梯形面积计算公式的由来,更有力地促进了学生思维能力的发展和问题解决策略意识的形成。

  不足之处:

  由于用多种方法探索梯形的面积计算公式,导致基本方法中出现部分学生不会叙述。

  再教设计:

  突出基本方法的教学,注意其它方法的时间分配。

《梯形的面积》教学反思12

  《新课标》中明确指出“数学教学应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”现就以五年级第九册教材中的《梯形的面积计算公式公式》的教学为例,谈谈自己的几点浅见。

  [片断]

  师:同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形并推导出面积的计算公式吗?

  生1:可以转化成长方形吧。

  生2:也可能转化成平行四边形。

  生3:也许三角形呢?

  ……

  师:那好,就请你们利用准备好的学具,小组内先议一议,然后剪一剪、拼一拼,看看有什么发现?

  (学生合作讨论,然后动手操作)

  师:通过刚才的动手操作,大家有什么发现吗?

  生1:我们组发现用两个完全一样的梯形可以拼成一个平行四边形。

  S=(a+b)·h÷2

  生2:我们组还发现用两个完全一样的直角梯形可以拼成一个长方形。

  S=(a+b)·h÷2

  生3:我们是沿着一条对角线剪开,分割成两个三角形。

  S=a·b÷2+b·h÷2=(a+b)·h÷2

  生4:如果是等腰梯形,沿上下底的中点的连线剪开,可以拼成一个长方形。

  S=(a+b)·h÷2

  ……

  (学生想出了很多方法)

  师:同学们真了不起,想出了这么多的好办法来推导梯形的面积计算公式,希望在今后的学习中,继续发扬这种精神。

  [反思]

  一、还学习的主动权于学生

  苏霍姆林斯基曾说过“在热的心灵深处,总有一种根深蒂固的需要,这就是希望自己是一个发现者,研究者。”而儿童的这种需要更为强烈。学生一旦在自己的活动中无意间发现了新的知识,就触动了他的这种需要。他就会有一种探究的欲望,此时的教师应适时地创设一定的问题情景,给学生一个活动的时间和空间,教师真正做一个学习的引导者、组织者和合作者。有时教师要舍得“放”,说不定学生会给你更多的惊喜。

  二、让学生亲历知识的获取过程

  新课程的理念,要求教师把自主探索的机会、时空留给学生,让学生在探究过程中感受到问题的存在,从而引发学生探究问题、解决问题的`欲望。不是说教者更重要的是“授之以渔”,而不是“授之以鱼”吗?这个案例中正是注重了这一点。在教学中,教师以一句“同学们已经掌握了推导平行四边形、三角形面积计算公式的方法,那你能把梯形转化成已学过的平面图形来推导面积的计算公式吗?”把学生的思维拉到“转化”的思想上来,又给予了多元的方法提示(可以议一议、剪一剪、拼一拼),让学生的思维有了更多的活动空间与形式,从而生成了更多的新知识,这才是真正的“授之以渔”啊!

《梯形的面积》教学反思13

  梯形面积的计算是小学生学习多边形面积计算中的一节内容。它与平行四边形、三角形面积的计算一起作为结束直线型面积的计算,进一步学习圆面积和立体图形表面积计算的基础,成为本册教学内容一个重点。五年级的学生,正处于由中向高年级过渡时期,其认识水平和思维能力亦正处于进一步发展和日趋成熟的时期,通过这一部分内容的学习,可进一步发展学生的空间观念,加强学生对图形特征及各种图形之间内在联系的认识,同时可促使他们的抽象概括等逻辑思维能力的发展。在本节的设计中主要突出了以下几点:

  1、加强学生动手操作,通过实际操作,既发展了空间观念,又培养了动手操作能力。

  2、放手让学生去发现、验证、推导、小结,得出梯形的面积计算公式。突出学生的主体地位,体现自主探索学习模式,有利于培养学生创造性思维能力。

  3、培养转化的数学方法,教学中引导学生主动探索所研究的图形与已学过的图形之间有什么样的联系,如何把要学的图形转化为已学的图形,从而使学生自己探索梯形的面积计算公式,理解更为深刻,思维能力亦得到发展。

  4、渗透数学中的`变换思想,在转化操作过程中,引导学生运用平面图形的旋转和平移,认识了解旋转和平移的含义及方法,以及其对图形位置变化的影响,进一步促进学生空间观念的发展。

  但在这节课当中,也存在一定的不足,只要是学生在与老师的配合上还有待改进,其中部分学生的讨论不够积极,有个别学生不会参与讨论,不愿意发表自己的见解,而且气氛也有待改提高,不过学生对动手操作、推导公式倒是很感兴趣。

《梯形的面积》教学反思14

  今天我上了已经在网上研讨了数日的《梯形的面积》一课,反思整堂课的教学,主要有以下几个特点:

  1、体现了知识的迁移

  在回顾旧知,分析问题的环节,我用课件出示平行四边形、三角形面积公式推导的过程,带领学生回顾旧知,再一次体会转化的思想。接着问学生,那么要想求梯形的面积我们该怎么做呢?因为刚刚复习了转化的思想,所以学生很容易想到,将梯形转化成我们学过的图形,为接下来的解决问题指明了方向。本环节的设计,善于抓住新旧知识的内在联系,数学思想方法的类比迁移,促进学生将梯形面积计算公式与已有认知结构中的平行四边形、三角形面积计算公式建立联系,为学生对梯形面积公式的探究、研讨,促进知识方法的有效迁移创造了条件。

  2、体现了数学与生活的联系

  首先,在课的开始,我从车窗玻璃是什么形状,这一生活中的情境,导入新课,让学生感受到数学来源于生活。其次,推导出梯形面积公式后,学生应用探索出来的方法解决实际生活中的问题。比如,求水渠横截面的面积,求机翼平面图的面积等。在获取了知识后马上让学生运用新知来解决实际问题,使学生切实并切身地体会到了数学与生活的密切联系!真正体现了数学“来源于生活,回归于生活”的思想。

  3、体现了探究性学习的特点

  本节课充分让学生动手实践——用学具剪剪拼拼,进行了自主探索,让学生利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,从不同的途径探索出梯形的面积计算方法。在这一环节的教学中,我十分注意突出学生主体作用的发挥,让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法。在这一环节中,学生出现了多种操作方法,如:有的学生把两个完全一样的梯形通过旋转、平移转化成一个平行四边形,推导出梯形的面积公式;有的学生用一个梯形沿中位线剪开,翻转180度,拼成一个平行四边形,推导出公式;有的学生将梯形沿对角线剪开变成两个三角形,推导出面积公式等等。充分发挥了学生的自主性,实实在在地给了学生进行探究、发现、创新的时间和空间!真正体现了“学生是学习的`主人,教师是组织者、引导者和参与者”的思想。

  4、体现了练习的层次性

  练习的设计体现由简到难的梯度性,关注后进生,也兼顾学有余力的学生,做到面向全体学生。使学生在不同程度上得到发展。第一道题,直接代入公式就可以算出结果。第二道题,求机翼平面图,需要先求出一个梯形的面积,然后乘以2,才能得到整个机翼平面图的面积。第三道题,则需要先根据各种图形的特点,求出梯形的上底或下底,再去代入公式,求面积。第四题,是通过计算和观察,发现,等底等高的梯形,面积相等。

  反思整个课堂教学过程,还是存在着许多需要改进的地方。

  1、先复习旧知,再情境导入会更好。

  在我设计的教案中是先情境导入,引出求梯形面积公式,问学生,应该怎样求?引导学生回顾推导平行四边形、三角形面积公式的过程,然后知识迁移,进而小组合作推导梯形面积公式。但在实际教学的过程中发现,先思考怎样求梯形面积,再回顾旧知,这样容易打断学生思考怎样求梯形面积的思路。因此,教学环节可以做这样的调整:先回顾旧知,然后再情境导入,求梯形的面积。这样,学生在复习了转化的思想,推导的方法后,可更好地将其运用到梯形面积公式的推导中去。

  2、关于推导方法的汇报、学习,可以更有条理

  学生小组合作结束后,汇报成果。在课上我是这样做的,先找3个同学汇报了这3种不同的方法,然后,因为第一种方法(将两个一样的梯形拼成一个平行四边形)是重点掌握的,而其他2种方法,因为较难,可视学生接受程度,不做统一要求。所以,我又指名再次找人,汇报第一种推导的方法,最后,同桌之间互相说一说。这样的过程,虽然突出了重点。但是,感觉,有些混乱,学生对第一种方法掌握得也不是很扎实。因此,做如下调整。在学生汇报第一种方法的同时,板书推导过程,帮助学生理解,然后,请其他也用这种方法的学生再次说推导过程,接着,同桌之间说一说,最后,再指名回答。这样,对于第一种方法的研究就比较透彻了。学生汇报第二种方法(将梯形沿对角线剪开,变成2个三角形),因为只需理解“转化”思想即可,推导过程不作为必须掌握的内容,所以,找一名学生汇报即可。学生汇报第三种方法(将梯形分为一个三角形和一个梯形),这种方法更难了,如果学生说不清楚,老师可以帮助学生把这种方法说清楚。

  3、小组合作探究的时间再充足些

  今天很多小组的学生,虽知道怎样推导梯形的面积公式了,但因时间不够,推导过程写得不完整,因此,在汇报时,不够流畅。应该给予学生更充足的探究的时间,让每个孩子都经历完整的探究过程。

《梯形的面积》教学反思15

  《梯形的面积》一课,是在学生掌握了平行四边形和三角形面积计算的基础上进行教学的。学生已掌握了一定的学习方法,形成了一定的推理能力。 由于所有学生已经有了推导三角形面积公式的经验,因此在推导梯形面积计算公式时,我想放手让学生自己利用前面的学习经验,动手把梯形转化成已经学过的图形,并让学生通过找图形之间的联系,用两个完全一样的梯形拼一拼,看一看能拼成什么图形,然后学生思考讨论:想想转化的图形与原梯形有什么关系?通过学生自主探索实践活动,()学生亲自参与了面积公式的推导过程,真正做到“知其然,必知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高。让学生主动操作、讨论,在充分感知、理解的基础上总结出梯形面积的计算方法,从而让学生在探究中不仅获取了知识,而且学会了学习。

  反思整个课堂教学过程,还是存在着一些问题。如在把梯形转化成各种三角形、平行四边形方法很多,学生的.很多想法出乎我的预设,问题就是在黑板上展示多种方案中,在原先的设计中,是将重点放在“用两个完全一样的梯形拼成一个平行四边形”的方案上,并让学生多多互动交流;然而,从教学的实际效果上看,学生最喜欢的并不是这种方案。那么,到底将学生全员参与的活动安排在哪里呢?

  我想还是得结合本班学生的实际,合理安排,及时调整课堂设计,多考虑学生的思维特点,这样效果肯定会更好。多边形面积教学反思圆的面积教学反思梯形的面积教学反思

【《梯形的面积》教学反思】相关文章:

梯形的面积教学反思04-14

《梯形面积》教学反思08-31

“梯形的面积计算”教学反思04-14

《梯形的面积》教学反思15篇04-13

梯形的面积教学反思15篇04-14

《梯形的面积》说课稿11-20

《梯形面积计算》说课稿07-12

《梯形的认识》教学反思08-22

《梯形的面积》说课稿13篇12-15