《三角形的内角和》教学反思(精选22篇)
在不断进步的时代,我们都希望有一流的课堂教学能力,反思是思考过去的事情,从中总结经验教训。那么大家知道正规的反思怎么写吗?以下是小编为大家整理的《三角形的内角和》教学反思,仅供参考,欢迎大家阅读。
《三角形的内角和》教学反思 篇1
今天学习的是《三角形内角和定理》第二课时,上节课有活动,下课晚了8分钟,学生小组分任务时,组长领任务,个别组长去厕所,组员忙着来领任务,热情很高,紧接着忙着抄题,有些学生忙着问问题,场面很是喜人。
上课用了十多分钟的时间对学、群学,各小组成员在本组展示中很积极,有的组长和成员追着我问问题,积极性很高,张思敏、吴桐桐语言通畅,声音响亮,进步很大,尤其是吴俊杰展示的调理清晰,效果很好,成为一亮点。
本节课的知识点,是“几何证明”的重要组成部分,这节课所涉及的内容对于证明题的学习显得十分重要。其原因在于如何添加辅助线、进行几何证明的首次学习,学生对此普遍感到困难;本课从“数”与“形”两个角度对辅助线的作法进行了分析与探索。 学生以动手实践、自主探究、合作交流的学习方式进行。我承担了学生自主性、探究性、合作性学习活动的设计者和组织者。在教学过程中,我给学生设置了富有挑战性的问题情境,让学生分组合作、自主地去探究和发现方法,本节课我的主导作用的`发挥是比较好的,主要体现在让学生的主体得到充分的展示。巧妙地化解了难点。
本节课的知识点,学生讲解定理的推论,应用,证明,掌握的较好,学生的积极性之高,出乎我的意料,徐淑瑶、崔秋月出现了一题多解,并且方法简单,得到了大家的好评,另外,参与度较高,但语言、站位等有待提高。
今天这节课,学生准备的虽然不是很充分,但效果不错,学生说这节课过得真快,心理很高兴。
我想,教师要想使学生感受到学习的快乐,就必须让学生体验到靠自己力量获得的成功,体会到探究与发现带来的乐趣。给学生一个展示个性、享受成功的机会。创设民主和谐的氛围,有助于减轻学生的心理负担,使学生的个性见解自由表达,独特做法是引导学生主动展示。例如:证明方法的多样性,反映学生思维的多样性,学生个性的多样性;放手让学生自己思考、展示、小结,体现学生的个性发展。
本节课我多次深入到有学习困难的学习小组,参与探究,引导他们发现,解决遇到的问题。因为每个学生都有按自己的选择参与学习的权利。都受个体已有认知水平和经验的限制,学生的学习很可能“遭遇”障碍,这常常会引发学生的失败感,降低学生学习的自信心,所以老师要适时鼓励,使学生享受到成功的喜悦。享受到一次成功,就会激励学生以更大的努力去追求更大的成功。
《三角形的内角和》教学反思 篇2
今天教学《三角形的内角和》,对于三角板,学生是不陌生的,所以我们从一副三角板入手,让学生算出一副三角板的内角和是180°,于是抛出问题,在其他三角形中三个内角的和是不是也是180°呢?学生当然会猜是。我觉得今天孩子不仅学到了三角形的内角和,还学到了对待一个猜想就要想办法来验证的数学思想。当我要求孩子们来验证的时候,有的孩子想到了量,有的孩子想到了折,这里我先让孩子们都去量,量了以后,因为有的同学量的不精确,所以我建议更精确的验证方法,孩子又想到了折,我又让孩子们去折。事后想想,如果我一开始就让孩子们尝试用自己喜欢的方法去验证一下,说不定碰撞的火花会跟激烈些。我这样一步一步来的话,就有些按部就班,没有那种水到渠成的感觉了。后来,校长提出,一开始有个孩子说到他量到175°,比较接近180°的'时候,我只是强调要精确,却没有很好的利用这一资源,如果我这时候让孩子把他画的这个三角形撕下来,折一折来验证的话,学生的印象会更加深刻。这点我没想到,看来我还不够智慧啊!
杨教导也提出,后面的习题三,正方形内角和是360°,而把它对折变成三角形,就变成了180°,把三角形对折还是180°,这道题我没有深入,这是教材没把握好啊!
以后要注意,但是这节课上孩子的表现还是比较令我满意的,比平时好!呵呵!
《三角形的内角和》教学反思 篇3
一、创设情境,激发学生学习兴趣。
上课之前,通过课件出示一个谜语,引导学生猜出谜底,从而揭晓今天主题——三角形。告诉学生我们今天继续来探究三角形的奥秘。首先课件显示有一个大三角形和一个小三角形在辩论。大三角形理直气壮的说:“我的内角和比你大”!小三角形无辜的说道:“是这样吗”?通过这样一组对话,使学生萌生了想要探究答案的欲望,激发了学生的学习兴趣。
二、小组合作,自主探究。
学生们拿出课前准备的三个三角形,要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的`结论。
三、练习设计,由易到难。
这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。
通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!
《三角形的内角和》教学反思 篇4
本节课的教学目标是:1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教学重、难点是让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
本节课教学设计符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,最后的游戏也很有趣味性,调动所有学生的积极性。让学生在游戏中除疲倦激发兴趣,拓展学生思维。
本课的不足之处是习题的设计受课本资源的限制,没有大胆突破教材,充分利用生活资源。让学生利用学过的.知识解决生活中常出现的问题,更能使学生体会到数学不仅来源于生活,学习数学的目的更是为了解决生活中的问题,体会到学习数学的重要意义。
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
《三角形的内角和》教学反思 篇5
本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的'大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的灵活性,对三角形的内角和也有了更清晰的认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。
《三角形的内角和》教学反思 篇6
笔者在执教四上数学时,接到数学片开课的通知,反复思量最后选择了四下的《三角形的内角和》这一教学内容。一开始有的老师认为不可以,因为四下的《三角形的内角和》这个内容之前需要先上三个内容,即:认识三角形的特性,会根据三角形的边、角特点给三角形分类,知道三角形任意两边之和大于第三边。如果给四上的学生上这个内容就违背了教材内容编排的有序性和知识的连续性。但是,难道一定要了解了三角形的特性,对三角形进行分类,知道三角形的三边关系之后再来研究三角形的内角和?难道就不能在学生对三角形有一定的感性认识的基础上,学习了角的分类和会量角之后,让学生去探究三角形的内角和进而研究多边形的内角和?最后经过反复思考,笔者作大胆的尝试,最终还是选择了这一教学内容。因为我们不能过于迷信我们的教材,不能盯死一套教材,不能过分的依赖教材。正如开头时讲到的,教材是滞后的,生活是现实的,我们教师则应该勇于探索,敢于实践,充分发挥教材的优势,把握教材的体系,做教材的开拓者。
新一轮基础教育课程改革,改变了课程内容难繁偏旧和过于注重书本知识的现状,赋予教师更多的权力,教师不仅仅是课程的实施者,同时还是课程的开发者。而把握教材提出自己的教学目标和教学重难点是对一个教师最基本的要求。新课程背景下的数学教师要转变观念,不能成为教材的奴隶,而要对教材内容进行开发,变教材是学生的世界为世界是学生的教材,与学生共同讨论、探索,在不断的积累中形成开放而充满活力的课堂。
在实验教科书四年级上册数学第二单元《角的'度量》的学习过程中,学生已经学会量角,知道了角的分类,于是笔者灵活的处理了教材,在学生对三角形有一定的感性认识,刚学会了量角以及对角的分类有了一定的认识的基础上制定了新的教学目标: 1、在学生已有的认知基础上,让学生经历量一量、拼一拼等数学活动验证三角形内角和是180°,并会应用这一知识解决四边形的内和角。2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。教学重点是引导学生用量、撕、拼等方法验证三角形的内角和是180度。教学难点是引导学生通过自主探索来得出任意三角形的内角和等于180度,进而利用这个知识来解决四边形的内角和。多次
试教下来,发现对教学目标的定位是比较明确的,重点放在让学生体验验证三角形的内角和等于180度这一数学探究过程。但对于教学重难点的把握是经过反复修改而形成的。因为,这一内容如果只是让学生知道三角形的内角和那么就没有深度,而本节课的深度究竟应该挖到哪里呢?事后发现,四年级上学期的学生在教师的引导帮助下,能够借助三角形的内角和等于180度进而得出四边形的内角和等于360度,但是,如果要学生进而得出五边形,六边形的内角和,最终发现所有多边形内角和的计算规律,在这一节课上是实现不了的。所以,本节课的难点定位是学生能够根据三角形的内角和等于180度,知道可以将四边形变成两个三角形,一个三角形的内角和等于180度,那么四边形的内角和等于360度。
肖川认为“对教师而言,上课是与人的交往,而不单纯是劳作;是艺术创造而不仅仅是教授;是生命活动和自我实现的方式,而不是无谓的牺牲和时光的耗费;是自我发现和探索真理的过程,而不是简单地展示结论”。
所以,为了实现教学过程的创新与生成,笔者经过多次的实践,本节课最后的教学过程设计方案如下:从平面图形引入,然后通过长方形来揭示内角概念,通过探究长方形的内角和是多少?自然引入三角形有几个内角,三角形的内角和是多少?你们确定吗?让学生大胆的猜想,学生都能想到三角尺中的两个特殊的三角形的内角和等于180度,然后追问:我们手中的三角尺的内角和是180度,是不是说明三角形的内角和都等于180度?这样通过特殊三角形到一般的三角形,引导学生自主探索三角形的内角和是多少度。学生大多认为通过测量可以来验证,但是活动之后用测量的方法难免有误差,于是老师就追问:有的同学量出来是正好是180度,有的是接近180度?这样你能确定三角形的内角和等于180吗?那么怎么办呢?你有什么其他的好办法呢?接着教师引导“如果三角形的内角和是180度,那么把它的三个内角拼起来,你觉得会拼成什么?”引出了用拼一拼一方法将三角形的三个内角拼成一个平角。而学生对于怎么拼还有疑惑,于是教师就在黑板上演示用撕的方法将三个内角拼在一起,然后再让各小组试试用拼一拼的方法,最后在交流的时候特地找那些量的不准的小组进行展示,所有的小组拼出来的结果都是等于180度,这样就能得出我们想要的结论。练习环节先是知道其中的两个角求第三个角,交流时体现了算法的多样化,然后是让学生用两块完全一样的三角形拼成一个图形,这样的题目比较有思考的空间,也有创意性,因为拼成的图形可以是大三角形,长方形,正方形,平行四边形。如果是看成大三角形,那么这个三角形的内角和还是等于180度,即又巩固和深化了三角形的内角和等于180度,而长方形,正方形的内角和在一开始上课时已经知道是360度,那么现在我们学习了三角形的内角和等于180度之后,现在我们可以将它们的内角和看成什么呢?学生会说看成两个一样的三角形,两个三角形的内角和相加等于360度。而接着追问平行四边形的内角和呢?学生也能自然的说出。最后追问一个任意的四边形的内角和呢?有学生会说,可以看成两个三角形,但这两个三角形的大小形状不同。但是,任意三角形的内角和都等于180度,所以四边形的内角和都可以看成是两个三角形的内角和,进而得出了四边形的同角和,同时发了练习纸引导学生在课外探究五边形、六边形的内角和是多少。这样,既培养了学生的观察能力和归纳概括能力,又体现了学生动手实践、合作交流,自主探索的学习方式,同时也培养了学生探索能力和创新精神,顺利的达成了教学目标,解决了教学重难点。
几节课上下来,笔者越来越肯定,教师完全可以做教材的开拓者,只要合理的对教材进行了整改分析,巧妙的设计练习,准确的了解学生的认知起点,反复的琢磨教学过程并进行创新,对学习材料进行思考与选择,就能打破教材的编排次序,让学生重新整合知识,实现知识的优化与提升,最终促进学生创造与发展。
《三角形的内角和》教学反思 篇7
一、设计思路:
这节课是上“三角形内角和”,因为学生对三角尺上每个角的度数比较熟悉,就从这里入手。先让学生算出一块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°,再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的'安排上,注意练习层次,共安排三个层次,逐步加深。在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
二、教学反思
这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。整节课的教学设计,条理清晰,层次清楚,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
但在学习活动的过程中,首先我觉得语言不够生动、连贯,声音也很小。其次,学生在进行操作活动前,我也没有明确说明操作方法,使学生不理解操作的用意,也没有让学生在操作中真正证实“三角形的内角和是180°”的结论。最后,对三角形内角和的归纳也没有完整,等等
总之,在这节课中存在着很多不足,今后我将花更多的时间在课堂教学方法、策略的研究上,使自己不断进步。
《三角形的内角和》教学反思 篇8
学生在学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。根据教学目标和学生掌握知识的情况,课堂上我围绕以下几点去完成教学目标:
一、创设情境,营造研究氛围
怎样提供一个良好的研究平台,使学生有兴趣去研究三角形内角的和呢?为此我抛出大、小两个三角形争吵的情境,让学生评判谁说的对?为什么争吵?导入课引出研究问题。“三角形的内角指的是什么?”“三角形的内角和是多少?”激发学生求知的欲望,引起探究活动。我在研究三角形内角和时,没有按教材设计的量角求和环节进行,而是从学生熟悉的正方形纸的内角和是360°入手,再把正方形纸沿着对角线剪开后会怎样呢?猜想一下其中的1个三角形的内角和是几度?学生很快得出一个直角三角形内角和是180°。猜测以下是不是各种形状、大小不同的三角形内角和都是180°呢?再组织学生去探究,动手验证,并得出结论。生在不断的发现中很自然地得到“三角形内角和是180°”的猜想。这样既使学生在这个探究过程中得到快乐的情感体验,又使学生有高度的热情去继续深入地研究“是否任何三角形内角和都是180°”。
二、小组合作,自主探究
任何一项科学研究活动或发明创造都要经历从猜想到验证的过程。“是否任何三角形内角和都是180°”,这个猜想如何验证,这正是小组合作的契机。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、拼一拼、折一折,让学生在小组内完成从特殊到一般的研究过程。然后再小组汇报研究结果以及存在问题。教师根据学生实际情况充分把握好生成性资源,让学生认识到有些客观原因会影响到研究的结果的准确性。例如,有些小组的学生量出内角和的度数要高于180°或低于180°,先让学生讨论一下有哪些因素会影响到研究结果的.准确性。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是已知三角形中两个内角的度数,求另一个角。第二层练习是已知等腰三角形中顶角或底角的度数,让学生应用结论求另外的内角度数。第三层练习是让学生用学过的知识解决四边形、五边形、六边形的内角和。练习设计提问体现开放性,“你还知道了什么”,让学生根据计算结果运用已有经验去判断思索。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,使教学任务不能完成,练习较少,新知没有得到充分巩固,以后应引起重视。在设计教案时要了解学生,深入教材,精心设计。
《三角形的内角和》教学反思 篇9
三角形内角和,是在学生认识了三角形的特点和分类的基础上进一步对三角形内角之间的关系的学习和探究。学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生是不陌生的,在这个过程中孩子们知道了内角的概念,但是他们却不知道怎样才能得出三角形的内角和是180度。因此本节课我提出的研究的重点是:验证三角形的内角和是180度。
在上课前我通过故事情境导入:“大三角形”将军和“小三角形”将军内角和一样大吗?引起同学们思考,激发出学生探究学习的热情。接着学生讨论:有什么办法可以验证得出这样的结论。学生首先提出度量角的度数的方法,之后通过测量角的度数,发现有的三角形内角和是180°,有的非常接近180°,让学生发现测量角的度数时容易产生误差,方法具有一定的局限性。之后学生通过撕角拼一拼的方法进行验证。通过“合作探究,实验论证”生动地诠释了新教育的基本理念。
本课新知识传授很好的把握三个环节:
1.重视动手操作,让学生在探究中收获知识。
《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”本节课通过量、折、剪、拼等多种活动,使学生主动探究,找到新旧知识的联系,得出研究问题的结论,有利于学生培养“空间观念”和动手操作能力。让学生独立思考,教师引导学生讨论验证方法,掌握要领。还有什么办法可以验证得出这样的'结论?学生就发挥想象,提出度量、折一折、拼一拼等方法。
2.在动手操作中验证猜想。
让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形,通过撕拼角的方式,小组合作交流,验证猜想,得出任意三角形的内角和是180°的结论。
3.重视问题预设,培养“空间观念”。
“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是学生“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,鼓励学生发挥想象,鼓励学生动手操作,鼓励学生验证猜想,培养学生“空间观念”。我在归纳总结环节,有意识地培养学生的推理能力,逻辑思维能力,增强了语言表达能力。最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,强化了学生对这节课的掌握。
作为一名新教师,在接下来的教学中,我要学会大胆放手,轻松自己,发展学生。放手让学生自己去思考去做,那怕他想错了做错了,只有这样他们才有机会知道自己错了错在哪儿,给他们更自由更广阔的发展空间,也只有这样才能唤起他们思考的欲望,也只有这样才能扬起他们创造的风帆!
《三角形的内角和》教学反思 篇10
二学期几何里一个重要的知识点——三角形内角和,是在学生认识了三角形的特点和分类的基础上这一节课进一步对三角形内角之间的关系的学习和探究。本课设计的出发点在于运用先进的多媒体手段让学生直观感知三角形内角和的特点。
这节课上完之后,我在课后进行了小结,也听取了经验丰富的教师的分析,收获很大,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:
1.在本次授课中,引入是比较恰当的。我是从学生原有的对图形的认识的感性知识进行引入的,先出示一个长方形,让学生说出它的内角和是多少度,学生用之前学过的知识都知道,长方形有四个直角,那么加起来就是360°,然后又用正方形,由于正方形和长方形有一个同样的特征,所以学生也很容易就能回答出来它的内角和是多少。再将正方形沿着对边剪开,分成两个三角形,这个时候问学生:你们能猜出三角形的内角和是多少吗?这样的引入和从旧知到新知的过渡,非常地自然,学生也较容易进行猜想。
2.利用多媒体手段让学生直观感知三角形内角和的特点。用动画演示撕角拼一拼,折角,让学生可以非常直观地认识三角形内角和的特点,印象非常深刻,也给学生在进行动手操作时以正确的指引。
3.小组合作,自主探究。整一节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人我讲完整节课而学生只是听。
4.在学生进行猜想之后,让学生开始动手实验,测量三角形的三个内角的度数并填表,这个环节在处理的时候不是很得当,因为量角在学生来说,本来就是一个难点,没有很好的掌握量角的'技巧导致没能准确地量角,而且在本节课中,要进行量角实验的三角形个数较多,学生不能很好地进行小组分工,所以在这个地方花费了不少的时间,而结果量出来的度数也不是很精确,虽说在测量中允许有误差,但是这与一开始的教学设计出发点有出入,达不到很好验证猜想的效果。
一节课下来,总的感觉还可以,学生能够掌握本节课的重点和难点,达到预期中的教学效果,但是课堂中的教学常规还不是很规范,虽然使用了多媒体课件进行辅助教学,但是却忽略了传统教学中的优势,不能很好地将两者结合起来运用,这是今后教学中必须引起重视的地方。
《三角形的内角和》教学反思 篇11
我在讲“三角形的内角和”时,开始就由求两个我们已经熟悉的直角三角尺的内角和入手。在学生的认知结构中,他们已经知道了两块三角尺的内角和是180°了。在此基础上,引导学生猜测,其他三角形的内角和是不是也是180°。这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,体现学生的`主体意识与参与意识。当学生通过量一量、折一折、撕一撕之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……
但试想一下,如果我上课之初,就告诉孩子三角形的内角和为180°,并且告诉孩子我的验证方法,即便告诉的方法再多,再详细,他们学到的也只是我的有限的方法,而且是老师的方法,不是自己发现的方法。
不过在进行动手操作的时候,有些小组没有抓到很好的要领,而我也没给予及时的指导;或者说,因为时间的关系,我的指导没有很好的说清楚,导致个别小组动手的时候不是很清楚。
对于活动性课程,我的把握不是很到位。在活动中出现的小问题,有的时候我经常会不知所措,不知道应该怎样及时解决,这个是我今后要努力的方向。
《三角形的内角和》教学反思 篇12
《课程标准》倡导探究性学习,力图改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,逐步培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力等,突出创新精神和实践能力的培养。探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去探究,并利用多媒体去验证学生的结论,最终得到三角形的内角和都是180°。
给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。“为什么不能画出有两个直角的三角形?三角形的内角度数有何奥秘?”这正是小组合作的契机。通过小组内交流,让学生在小组内完成从特殊到一般的研究过程。教师引导学生通过测量、剪拼、折拼等实际操作,建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主体参与意识。在此基础上,教师通过多媒体动画演示,让学生更直观、更清晰地观察到剪拼、折拼的过程,进一步验证探究结论。同学们通过自主实践、合作探究完成了本节课的教学任务。
整节课的'练习设计,由易到难。在应用“三角形内角和是180°”这一结论时,第一、二层练习是已知三角形两个内角的度数,求另一个角和简单的判断题。第三层练习是求特殊三角形内角的度数,真正做到了三角形内角和知识与三角形特点的有机结合。
在实际教学中,我多次利用超级画板、flash动画,从开始的激趣引入、观察猜想,到后来的数据验证,多媒体在整个教学中起到了不可忽视的辅助作用。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。同时我也发现,学生在合作探究中的组织如合理分工、有效合作等方面不够科学合理,还需更具体的指导,以使每位学生都能真正参与,让合作探究更有效。
《三角形的内角和》教学反思 篇13
我执教的《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《多边形的内角和》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习和掌握三角形的内角和是180°这一规律具有重要意义。
一、创设情境,营造探究氛围。
怎样提供一个良好的探究平台,使学生有兴趣去研究三角形内角的和呢?爱因斯坦说过:“问题的提出往往比解答问题更重要”,因此这节课在复习旧知“三角形的特征”后,我引出了研究问题“三角形的内角指的是什么?”“三角形的内角和是多少?”“你猜三角形的内角和是多少度?你是怎么猜的?这个问题一抛出去马上激发学生的学习热情。由于学生在平时使用三角板时已经若隐若现地有了特殊的直角三角形的内角和是180度这一感觉,因此本环节,要求学生猜一猜三角形的内角和是多少,并说说是怎么猜的,以激发学生已有知识经验,并体会到猜想要合理且有根据,同时也为推理验证的引出作必要的铺垫。
二、操作验证,突破重难点,积累数学活动经验。
《标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我觉得本课的重点就是要让他们知道“知其所以然”,因此接着就让学生分组讨论:有什么办法可以验证得出这样的结论。学生会提出度量、折一折的方法,然后让学生拿出课前准备的锐角三角形、直角三角形、钝角三角形以小组为单位有选择的用度量的方法或者用折一折的方法,通过小组合作交流,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生逻辑推理能力,增强了语言表达能力,并潜移默化中渗透了一个重要数学思想―――转化思想。
在猜测后先独立思考验证的方法,再进行全班交流,给学生充分的活动时间和空间,让学生动手操作,使学生在量、剪、拼、折等一系列操作活动中发现了三角形内角和是180°这个结论。在探索活动前,交流如何使研究样本具有代表性和全面性与如何分工做到操作省时高效这两个问题,培养学生严谨、科学正确的研究态度,让学生在活动中积累基本的数学活动经验,为后续的.学习提供了经验支撑。
三、练习设计,由易到难
研究是为了应用,在应用“三角形内角和是180°”这一结论时,第一层练习是基础练习题:已知三角形中两个内角的度数,求另一个角;已知一个角的度数(等腰三角形中顶角或底角的度数),让学生应用结论求另外的一个内角的度数;一个角的度数都不交代,给出三角形的特征(等边三角形),求这个三角形每个角的度数。第二层练习是让学生用学过的知识解决生活中实际问题的内角度数。第三层练习是拓展深化练习,让学生运用已有经验去判断思索,如:“大三角形的内角和比小三角的内角和大”对吗?“你能画出两个直角三角形吗?为什么?等问题。体现习题设计的坡度性与层次性,让不同的学生都各有所收获,关注了学生差异问题。
四、教学中存在不足
在教学中,由于我对学生了解的不够充分,让学生自己想其它的验证方法,难度较大,浪费了大量时间,拖课了。因此在设计教案时要深入了解学生,反复研究切合实际的教学设计,这是我在以后的备课中要注重的地方。
《三角形的内角和》教学反思 篇14
三角形的内角和一课,知识与技能目标并不难,但我认为本节课更重要的,是通过自主探究与合作交流,使学生经历知识的形成过程,领悟转化思想在解决问题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同时,在不同方法的交流中,开拓思维、提升能力。基于以上里面,本节课,我也准备引导学生采用自主探究、动手实践、猜想验证、合作交流的学习方法,并在教学过程中谈话激疑,引导探究;组织讨论,适时启发帮助。使教法和学法和谐统一在“以学生的发展为本”这一教育目标之中。
由于是借班上课,学生对于三角形了解的内容还不够多,所以我才用了直接导入的形式来进入新课,让学生自己探讨什么是三角形的内角,三角形有几个内角,三角形的内角和又是多少呢?来揭示内角和内角和的概念,学生明确了内角与内角和的概念,然后让学生大胆的猜测,三角形的内角和是多少,有的同学猜测是100度、90度、200度,但猜测不等于结论,在这里我追问大家猜测的依据是什么?同学们并没有说出来,于是我引导大家怎样才能知道他们的内角和是多少呢,同学们想到了测量每个内角是多少,然后再求和。我又追问:怎样才能知道每个内角是多少呢?于是同学们想到了量一量,这时让同学们动手进行测量记录数据,但由于学生动手操作前教师没有对操作步骤进行要求,导致同学们在测量时分不清测量的是哪一个角,我及时引导大家把每个内角都标上序号,在进行测量,分别把他们测量的数据填写的报告单当中,因为这样导致了同学们测量的速度较慢,最终由于时间关系钝角三角形的内角和学生操作完成,在展示成果时没有进行展示,同学们只得到了钝锐角、直角三角形的内角和是接近180度的。如果我能再给学生一点点时间,学生就可以完成了,以后教学中还是应该多多放手,给学生留有先足的动手空间和时间。
我认为数学课不仅是解决数学问题,更重要的是思维方式的点拔,使数学思想的种子播种在学生的头脑中。由于在量一量、算一算的环节中,学生初验证了三角形的内角和接近180度的,于是引导学生由180度想到平角,让学生探讨交流:怎样才能把一个三角形的三个内角转化平角。撕拼这一环节过程主要向学生展示渗透转化的数学思想的教学目标。四年级学生在以往的数学学习过程中都积累了不少转化的体验,但在这种体验基本上处于无意识状态,只有合理呈现学习素材,才能使学生对转换策略形成清晰的认识。操作之初,一部分学生没有明确操作目的,把三个不同的三角形的角拼在了一起,我在巡视的过程中发现了这一现象后,让学生再次谈操作要求,明确操作目标,之后引导学生如何把三个角从三角形分离出来,从而部分学生想到了撕拼法,一部分学生想到了折拼法,于是我请撕拼法的你同学上台展示后,再让用折拼法的同学展示他们的方法,并给予肯定和评价,至此教学目标基本完成,学生明确知道了:三角形的内角和为180度。为了让学生更深刻的理解这一结论,我设计了一变二,和二变一的图形展示,使学生明确了所有三角形的内角和都是180度,与形状大小无关,如果时间充裕的'话我想让学生探一下,增加和减少的度数源于哪里。
数学规律的形成与深化,不仅靠感知,还要辅以灵活、有趣、有层次的课堂训练,已达到练习的有效性。对此,我设计了有层次的练习,但由于时间只有了30分钟,这一部分没有来得急提供给学生,可以说是这节课的遗憾之一。
总之,本节课力图学生通过自主探究、合作交流,让学生充分经历知识的形成过程,让学生学会数学、会学数学、爱学数学。在教学过程中,随时会生成一些新的教育资源,课堂的生成大于课前的预设,如何有效的利用生成、有效的进行评价,是我该思考的问题,也是我今后课堂的努力方向。
《三角形的内角和》教学反思 篇15
在课间我有意问了一下学生你们知不知道三角形的内角和是几度,发现有一些学生已经知道三角形三个内角的和是180°,因此在导入环节中插入了一个猜角游戏中,请量出自己准备的三角形的三个角的度数,只要你们说出其中两个角的度数,我能猜出第3个角的度数,让生说我猜,要求用自己准备的三角形进行操作。有一部分学生已经能跟着我说出第三个角的度数。当时我并没有批评这些学生,而是采用了表扬的方式,学生很开心。
在接下来的实验验证环节中,那些知道三角形内角和是180°的学生就猜度数,而没有进行真正的实验验证,反倒是刚学到的学生真正做到用实验去验证“三角形的内角和中180°”。因此我一直在想,是不是能设计一些新的方式让已经知道三角形内角和是180°的学生也能真正参与到实验验证的环节中来。于是让学生请观察自己手中的三角板,问它们是什么三角形?你知道三角板三个内角的和是多少度吗?问学生发现了什么?
三角尺的三个内角和是180°。然后让学生撕下三角形的三个内角并把它们拼在一起和折三角形的三个内角,使它们正好折在一起,都能拼成一个平角,
最后拿出课前准备好的长方形、正方形,让学生自己想办法验证三角形内角和是180°。我个人认为学生通过亲自动手操作实验得出三角形内角和是180°,这样使他们大胆地想,学生课上注意力比较集中。教师也能在教学活动中从一个知识的传播者自觉转变为与学生一起发现问题、探讨问题、解决问题的`组织者、引导者、合作者。
在“想想做做”第2题中,学生在还没有拼的时候先看了书,就猜拼出来的大三角形的内角和是360°,经过提醒“内角”的含义,学生才真正体会到“任何一个三角形的内角和都是180°”,不管这个三角形是大还是小。
《三角形的内角和》教学反思 篇16
在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:
1、学生小组合作学习的能力还有待于进一步培养
在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的`效果不理想。
2、我本身驾驭课堂的能力还有待于提高
由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
《三角形的内角和》教学反思 篇17
整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:
1、精心设计学习活动,让每一个学生经历知识形成的过程。
为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的'主动建构。
2、立足长远,注重长效,不仅关注知识和能力目标的落实,更注重数学思想方法的渗透。
在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。
3、遵循教材,不唯教材。
本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。
4、不足之处:
学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。
《三角形的内角和》教学反思 篇18
三角形内角和等于180,对于大多数同学来说并不是新知识。因为在此之前同学们已经运用过这一知识。因此,我觉得这一堂课的重点不是让学生记住这一知识点,也不是怎样运用它去解决问题,而是让学生证明这一结论,即要让学生亲历探索过程并在探索中验证。
1、以疑激思
古人云:学起于思,思源于疑。因此,要激发学生的思维,让学生主动探索。学生的积极思维往往是由问题开始的,在解决问题中得到发展。因此,在课一开始,我便通过拟人化的对话情境:大三角形说我的内角和比你大!小三角形很不服气的说我的内角和比你大!接着抛出一个问题:到底哪个三角形的.内角和大呢?为什么?你能证明吗?引起了学生的积极思考,并探索解决问题的方法。
2、以动启思
在教学中,通过丰富的材料让学生动手操作,通过量、撕拼、折拼等实验活动,让学生得到的不仅仅是三角形内角和的知识,更重要的是学到了怎样由已知知识探索未知的思维方式与方法,激发了他们主动探索知识的欲望。通过多种实验进行操作验证也让学生明白了只要善于思考,善于动手就能找到解决问题的方法。
虽然,在教学中也还有一些不顺利的地方,比如一些动手能力差的学生未能及时跟进,对于方法不对的学生未能及时指导和帮助等。但是本堂可采用这样的方式展开教学是学生喜欢的也是有成效的。
《三角形的内角和》教学反思 篇19
在“三角形内角和”这一内容的教学时,采用的教学方式是教给学生测量或者是撕拼的方法,然后得出结论,进行应用。虽然可以节省时间,短期内收到较好的效果,特别是要求学生把结论给记住,学生应用结论解决相关问题一般是不会有困难的。但把数学知识的发生过程轻描淡写,缺乏探究过程,这样学数学,学生感觉学得累,很乏味,在他们的感受中,数学渐渐地变成枯燥无味的了。本节课应着眼于学生的能力和学习数学的兴趣,上课一开始,可通过创设动画的问题情境,以较好地激发了学生的学习兴趣,然后给学生提供一些材料,让学生以先独立思考再合作的方式,为学生留有足够的`空间去探究出结论。学生通过测量、撕拼、折叠等方法,探究出三角形内角和的结论。方法不是唯一的,对于学生通过独立思考出来的解决问题的多种策略,教师适时给予鼓励表扬,特别是对学生解决问题的思维方法给予充分的肯定。在这一过程中,学生又出现不同的理解和观点,产生真实的辩论,从而更深刻地理解了“三角形内角和是180度的结论。如此学生收获的不仅仅是数学知识,更多的是对学习数学的兴趣和信心,获得的是解决问题的策略和方法。
而后,通过拓展应用环节,再让学生通过应用练习和发展性练习,既巩固了本节课的知识,又培养了学生思维的灵活性和深刻性,使学生进一步深入理解了“任何三角形内角和都是180度。”这一结论,并大胆猜测推算出长方形和正方形的内角和。
《三角形的内角和》教学反思 篇20
新课标提出“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课。引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的.方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。
总之,在上课的过程中,给了我学习的机会,在今后教学过程中该如何预设好每一环节,如何说好每一句话,让自己的课堂效率更高。
《三角形的内角和》教学反思 篇21
在学习本节课之前,几乎每个同学都知道三角形的内角和是180°。所以,本节课的重点我放在:证实三角形的内角和是180°以及运用三角形内角和的知识解决基本的实际问题。
在教学过程中,我依然重视学生之间和小组之间的合作、交流,让学生们都去折一折,剪一剪,拼一拼,自己动手感受三个角拼在一起可以形成一个平角,进而证实任何三角形的内角和都是180°。这个过程非常重要,学生们在实际的操作过程中,可以进一步加深对三角形内角和180°的理解和认知。让学生自主的实验、探索,调动学生的主动性,参与到数学的活动中去!
并且,在剪的过程中,我演示了三种不同三角形的拼凑结果,进一步证实,无论任何的三角形,部分形状和大小,内角和都是180°。
现在反思一下,课堂中自然有很多好的地方,学生学习的积极性也很高,但是也有一些不如意的地方,比如在剪一剪的过程中,有的同学因为没有剪刀,没有真诚的去操作,还有一两个个别的学生在演示的时候没有演示好。
还有的同学,在剪之前,没有做好标记,导致剪完之后,找不到哪个是原来三角形的角,这个是我没有预见到的`,因此我在第二个班级上课的时候,就提前让学生们在三个角上面做了标注,这样就不会再出现那样的混乱。
另外,学生在反馈学习效果时,没有做到我想象中那样好的顺序,以及很好的语言表达能力,不过,我做到了不慌不忙,让学生对学生进行纠正和帮助,课堂的气氛和交流还是很好的。
因为学生基本的互相交流、讨论和总结的能力有了一定的提高,接下来,我会进一步的放手,把课堂一步步的再去还给学生,给学生更多的独立学习和独立思考的时间和空间,充分的调动学生自学的能动性!
《三角形的内角和》教学反思 篇22
《三角形内角和定理的证明》我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的.重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。
课后我认为本节中的成功之处有以下几点
1、引入简单精炼,给了全体学生的自信心,能使所以学生的注意力迅速地集中到课堂上来;
2、利用拼图的方法来找到“三角形内角和定理”的证明方法的过程中,学生充分地配合,学生的思维得到了最大限度的发挥,而且采用此种方法来引出辅助线在几何中应用,巧妙地分散了本节的重点和难点,事实也证明学生的接受程度很好;
3、教师在多媒体上展示每个三角形都是用三种不同颜色的彩纸拼成的,学生在学习的过程中看起来会更加的清晰、醒目;
课后我认为本节课中的不足之处:
1、在学生拼图寻求“三角形内角和定理”证明之前的铺垫,有些过快,导致个别学生不太明白这些铺垫对于利用拼图来证明定理时有什么用途;
2、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。
【《三角形的内角和》教学反思】相关文章:
《三角形的内角和》教学反思03-11
三角形的内角和教学反思03-27
三角形的内角和教学反思优秀03-03
《三角形的内角和》教学反思15篇03-11
《三角形的内角和》教学反思(15篇)03-22
《三角形的内角和》教学反思精选15篇04-04
《三角形的内角和》教学反思(汇编15篇)04-02
《三角形的内角和》教学反思(合集15篇)04-04
三角形的内角和说课稿07-08