- 相关推荐
高中函数说课稿
作为一名教学工作者,总归要编写说课稿,借助说课稿可以更好地组织教学活动。那么优秀的说课稿是什么样的呢?下面是小编精心整理的高中函数说课稿,仅供参考,希望能够帮助到大家。
高中函数说课稿1
一、教材分析
1· 教材的地位和作用
在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。
y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。
⒉教材的重点和难点
重点是对周期变换、相位变换规律的理解和应用。
难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。
⒊教材内容的安排和处理
函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。
二、目的分析
⒈知识目标
掌握相位变换、周期变换的变换规律。
⒉能力目标
培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。
⒊德育目标
在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。
⒋情感目标
通过学数学,用数学,进而培养学生对数学的兴趣。
三、教具使用
①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。
②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。
四、教法、学法分析
本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。
以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。
五、教学过程
教学过程设计:
预备知识
一、问题探究
⑴师生合作探究周期变换
⑵学生自主探究相位变换
二、归纳概括
三、实践应用
教学程序
设计说明
〖预备知识
1我们已经学习了几种图象变换?
2这些变换的规律是什么?
帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。
〖问题探究
(一)师生合作探究周期变换
(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin
x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。
(2) 在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?
(二)学生自主探究相位变换
(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?
(2) 令f(x)=sinx,则f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。
设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。
设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。
师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。
〖归纳概括
通过以上探究,你能否总结出周期变换和相位变换的一般规律?
设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。
〖实践应用
(一)应用举例
(1)用五点法作出y=sin(2x+)一个周期内的'简图。
(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换
(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。
(4)归纳总结
从上述的变换过程中,我们知道若f(x) =sin2x,则f(___)= sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x →y= sin(2x+)的变换应该是_____.
(二)分层训练
a组题(基础题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
b组题(中等题)
如何完成下列图象的变换:
①y=sin3x→y=sin(3x+1)
②y=sin(x+1) →y=sin(3x+1)
③y=sinx →y=sin(3x+1)
c组题(拓展题)
①如何完成下列图象的变换:
y=sinx →y=sin(3x+1)
②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。
让学生用五点法作出这个图象是为了验证变换方法是否正确。
给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。
这个步骤主要目的是培养学生的探究能力和动手能力。
这个问题的解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。
a组题重在基础知识的掌握,
由基础较薄弱的同学完成。
b组比a组增加了第③小题,
重在对两种变换的综合应用。
c组除了考查知识的综合应用,
还要求学生对新问题进行探究,
有较大难度,适合基础较好的
同学完成。
作业:
(1)必做题
(2)选做题
作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。
六、评价分析
在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。
调节与反馈:
⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。
⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。
附:板书设计
高中函数说课稿2
一、说教材
1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标
根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的.目标定为:
1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法
本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
四、说学法
我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。
好学教育:
因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。
高中函数说课稿3
尊敬的各位评委、老师们:
大家好!
今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。下面介绍我对本节课的设计和构思,请您多提宝贵意见。
我的说课有以下六个部分:
一、背景分析
1、学习任务分析
本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。
2、学情分析
学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。
另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。
基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;
教学难点为:函数概念的形成及理解。
二、教学目标设计
根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。
1、知识与技能(方面)
通过丰富的实例,让学生
①了解函数是非空数集到非空数集的一个对应;
②了解构成函数的三要素;
③理解函数概念的本质;
④理解f(x)与f(a)(a为常数)的区别与联系;
⑤会求一些简单函数的定义域。
2、过程与方法(方面)
在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。
3、情感、态度与价值观(方面)
让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。
三、课堂结构设计
为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:
复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识——小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。
四、教学媒体设计
教学中利用投影与黑板相结合的形式,利用投影直观、生动地展示实例,并能增加课堂容量;利用黑板列举本节重要内容,使学生对所学内容有一整体认识,并让学生利用黑板展写、展讲例题,有问题及时发现及时解决。
五、教学过程设计
本节课围绕问题的解决与重难点的突破,设计了下面的教学过程。
整个教学过程按四个环节展开:
首先,在第一环节——复习旧知,引出课题,先由两个问题导入新课
①初中时函数是如何定义的.?
②y=1是函数吗?
[设计意图]:学生通过对这两个问题的思考与讨论,发现利用初中的定义很难回答第②个问题,从而激起他们的好奇心:高中阶段的函数概念会是什么?激发他们学习本节课的强烈愿望和情感,使他们处于积极主动的探究状态,大大提高了课堂效率。
从学生的心理状态与认知规律出发,教学过程自然过渡到第二个环节——函数概念的形成。
由于高中阶段的函数概念本身比较抽象,看不见也摸不着,不易直接给出,因此在本环节中,我主要通过学生能看见能感知的生活中的3个实例出发,由具体到抽象,由特殊到一般,一步步归纳形成函数的概念,此过程我称之为“创设情境,形成概念”。
对于这3个实例,我分别预设一个问题让学生思考与体会。
问题1:从炮弹发射到落地的0-26s时间内,集合A是否存在某一时间t,在B中没有高度h与之对应?是否有两个或多个高度与之相对应?
问题2:从1979—20xx年,集合A是否存在某一时间t,在B中没有面积S与之对应?是否有两个或多个面积与它相对应吗?
问题3:从1991—20xx年间,集合A中是否存在某一时间t,在B中没恩格尔系数与之对应?是否会有两个或多个恩格尔系数与对应?
[设计意图]:通过循序渐进地提问,变教为诱,以诱达思,引导学生根据问题总结3个实例的各自特点,并综合各自特点,归纳它们的公共特征,着重向学生渗透集合与对应的观点,这样,再让学生经历由具体到抽象的概括过程,用集合、对应的语言来描述函数时就显得水到渠成,难点得以突破。
函数的概念既已形成,本节课自然进入了第3个环节——剖析概念,理解概念。
函数概念的理解是本节课的重点也是难点,概念本身比较抽象,学生在理解上可能把握不准确,所以我分两个步骤来进行剖析,由具体到抽象,螺旋上升。
首先,在学生熟读熟背函数概念的基础上,我设计一个学生活动,让学生充分参与,在参与中体会学习的快乐。
我利用多媒体制作一个表格,请学号为01—05的同学填写自己上次的数学考试成绩,并提出3个问题:
问题1:若学号构成集合A,成绩构成集合B,对应关系f:上次数学考试成绩,那么由A到B能否构成函数?
问题2:若将问题1中“学号”改为“01—05的学生”,其余不变,那么由A到B能否构成函数?
问题3:若学号04的学生上次考试因病缺考,无成绩,那么对问题1学号与成绩能否构成函数?
[设计意图]:通过层层提问,层层回答,让学生对概念中关键词的把握更为准确,对函数概念的理解更为具体,为总结归纳函数概念的本质特征打下基础。
其次,我通过幻灯片的形式展示几组数集的对应关系,让学生分析讨论哪些对应关系能构成函数,在学生深刻认识到函数是非空数集到非空数集的一对一或多对一的对应关系,并能准确把握概念中的关键词后,再着重强强在这两种对应关系中,何为定义域,何为值域,值域和集合B有什么关系,强调函数的三要素,得出两函数相等的条件。
至此,本节课的第三个环节已经完成,对于区间的概念,学生通过预习能够理解课堂上不再多讲,仅在多媒体上进行展示,但会在后面例题的使用中指出注意事项。
在本节课的第四个环节——例题分析中,我重点以例题的形式考查函数的有关概念问题,简单函数的定义域问题以及函数的求值问题,至于分段函数、复合函数的求值及定义域问题,将在下节课予以解决,本环节主要通过学生讨论、展写、展讲、学生互评、教师点评的方式完成知识的巩固,让学生成为课堂的主人。
最后,通过
——总结点评,完善知识体系
——课堂练习,巩固知识掌握
——布置作业,沉淀教学成果
六、教学评价设计
教学是动态生成的过程,课堂上必然会有难以预料的事情发生,具体的教学过程还应根据实际情况加以调整。
最后,引用赫尔巴特的一句名言结束我的说课,那就是“发挥我们教师的创造性,使教育过程成为一种艺术的事业,使我们不聪明的孩子变的聪明,使我们聪明的孩子变的更聪明”。
谢谢大家!
高中函数说课稿4
各位评委老师:
大家好!
我是本科数学xx号选手,今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。
一、教材分析
1、 教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、 教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
3.学情分析
高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的'增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强.
二、教学目标
知识目标:
(1)函数单调性的定义
(2)函数单调性的证明
能力目标:
培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:
培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、 例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1.3A组1、2、3 ,二组 习题1.3A组2、3、B组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
高中函数说课稿5
一、教材分析
1、教材的地位与作用:《同角三角函数的基本关系》是学习三角函数定义后安排的一节继续深入学习的内容,是求三角函数值,化简三角函数式,证明三角恒等式的基本工具,是整个三角函数的基础,起承上启下的作用,同时,它体现的数学思想方法在整个中学学习中起重要作用。
2、教学目标的确定及依据
A、知识与技能目标:通过观察猜想出两个公式,运用数形结合的思想让学生掌握公式的推导过程,理解同角三角函数的基本关系式,掌握基本关系式在两个方面的应用:
1)已知一个角的一个三角函数值能求这个角的其他三角函数值;
2)证明简单的三角恒等式。
B、过程与方法:培养学生观察——猜想——证明的科学思维方式;通过公式的推导过程培养学生用旧知识解决新问题的思想;通过求值、证明来培养学生逻辑推理能力;通过例题与练习提高学生动手能力、分析问题解决问题的能力以及其知识迁移能力。
C、情感、态度与价值观:经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
3、教学重点和难点
重点:同角三角函数基本关系式的推导及应用。
难点:同角三角函数函数基本关系在解题中的灵活选取及使用公式时由函数值正、负号的选取而导致的角的范围的讨论。
二、学情分析:
学生刚开始接触三角函数的内容,学习了任意角的三角函数,对这一方面的内容既感到新鲜又感到陌生,很有好奇心,跃跃欲试,学习热情高涨。
三、教法分析与学法分析:
1、教法分析:采取诱思探究性教学方法,在教学中提出问题,创设情景引导学生主动观察、思考、类比、讨论、总结、证明,让学生做学习的主人,在主动探究中汲取知识,提高能力。
2、学法分析:从学生原有的知识和能力出发,在教师的带领下,通过合作交流,共同探索,逐步解决问题.数学学习必须注重概念、原理、公式、法则的形成过程,突出数学本质。
四、教学过程设计
例1、设计意图:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解的情况不止一种。本题主要利用的数学解题思想是:分类讨论
例2、设计意图:
(1)分子、分母是正余弦的一次(或二次)齐次式,注意所求值式的分子、分母均为一次齐次式,把分子、分母同除以 ,将分子、分母转化为 的'代数式;还可以利用商数关系解决。
(2)“化1法”,可利用平方关系 ,将分子、分母都变为二次齐次式,再利用商数关系化归为 的分式求值;
五、教学反思:
如此设计教学过程,既复习了上一节的内容,又充分利用旧知识带出新知识,让学生明白到数学的知识是相互联系的,所以每一节内容都应该把它牢固掌握;在公式的推导中,教师是用创设问题的形式引导学生去发现关系式,多让学生动手去计算,体现了&qut;教师为引导,学生为主体,体验为红线,探索得材料,研究获本质,思维促发展&qut;的教学思想。通过两种不同的例题的对比,让学生能够明白到关系式中的开方,是需要考虑正负号,而正负号是与角的象限有关,角的象限题目可以直接给出来,但有时是需要已知条件来推出角可能所在的象限,通过分析,把本节课的教学难点解决了。
由于课堂在完成例题及变式时要给予学生充分的时间思考与尝试,故对学生的检测只能安排在课后的作业中,作业可以检测学生对本节课内容掌握的情况,能否灵活运用知识进行合理的迁移,可以发现学生在解题中存在的问题,下节课教师再根据学生完成的情况加以评讲,并设计相应的训练题,使学生的认识再上一个台阶。
高中函数说课稿6
各位同仁,各位专家:
我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册 第1。2节
先对教材进行分析
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用: 任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
教学重点:任意角三角函数的定义
教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:
学生已经掌握的内容,学生学习能力
1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
知识目标:
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
能力目标:
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性。
教学过程分析
总体来说, 由旧及新,由易及难,
逐步加强,逐步推进
先由初中的`直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排
引入: 复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
SinA=对边/斜边=BC/AB
cosA=对边/斜边=AC/AB
tanA=对边/斜边=BC/AC
逐步拓展:在高中我们已经建立了直角坐标系, 把“定义媒介”从直角三角形改为平面直角坐标系。
我们知道,随着角的概念的推广,研究角时多放在直角坐标系里, 那么三角函数的定义能否也放到坐标系去研究呢?
引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示, 从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A ,这三个比值的大小和P点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义
例1已知角A 的终边经过P(2,—3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角A 的大小是30度,由定义求角A的三个三角函数值
结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数
例题变式2, 已知角A 的终边经过P(—2a,—3a)( a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论, 让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知A在第二象限且 sinA=0。2 求cosA,tanA
求cosA,tanA
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制A的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业P16 1,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作P23 1(2),5(2),6(2)(4) 选作P23 3,4
板书设计(见PPT)
高中函数说课稿7
我将从教学理念;教材分析;教学目标;教学过程;教法、学法;教学评价六个方面来陈述我对本节课的设计方案。
一、教学理念
新的课程标准明确指出“数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质。”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值。
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展。本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变。
二、教材分析
三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础。本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的.一个直观反映。共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时。
本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律是本节课的重点。
难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解。因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键。
依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标。
三、教学目标
[知识与技能]
通过“五点作图法”正确找出函数y=sinx到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图。
[过程与方法]
通过引导学生对函数y=sinx到y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法。
[情感态度与价值观]
课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想。在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观。
四、教学过程(六问三练)
1、设置情境
《函数y=Asin(ωx+φ)的图象(第二课时)》说课稿。
高中函数说课稿8
函数的单调性
今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。
一、说教材
1、教材的地位和作用
本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。
2、学情分析
本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。
教学目标分析
基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:
1.知识与技能(1)理解函数的单调性和单调函数的意义;
(2)会判断和证明简单函数的单调性。
2.过程与方法
(1)培养从概念出发,进一步研究性质的意识及能力;
(2)体会数形结合、分类讨论的数学思想。
3.情感态度与价值观
由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。
三、教学重难点分析
通过以上对教材和学生的分析以及教学目标,我将本节课的重难点
重点:
函数单调性的概念,判断和证明简单函数的单调性。
难点:
1.函数单调性概念的认知
(1)自然语言到符号语言的转化;
(2)常量到变量的转化。
2.应用定义证明单调性的代数推理论证。
四、教法与学法分析
1、教法分析
基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。
2、学法分析
新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。
五、教学过程
为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。
(一)知识导入
温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的`情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。
(二)讲授新课
1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?
通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。
2.观察函数y=x2随自变量x变化的情况,设置启发式问题:
(1)在y轴的右侧部分图象具有什么特点?
(2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1 (3)如何用数学符号语言来描述这个规律? 教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。 (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。 通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1 仿照单调增函数定义,由学生说出单调减函数的定义。 教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。 (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解) (三)巩固练习 1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x 练习2:练习2:判断下列说法是否正确 ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。 ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。 1③已知函数y=,因为f(-1) 1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x 上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。 (四)归纳总结 我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。 (五)布置作业 必做题:习题2-3A组第2,4,5题。 选做题:习题2-3B组第2题。 新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。 二次函数的图像说课稿 今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。 一、教材分析 教材的地位和作用 本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。 学情分析 本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的`能力。 二、教学目标分析 基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分: 1.知识与技能 理解二次函数中参数a,b,c,h,k对其图像的影响; 2.过程与方法 通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。 3.情感态度与价值观 通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的辩证统一。 三、教学重难点分析 通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下 重点: 二次函数图像的平移变换规律及应用。 难点: 探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。 四、教法与学法分析 1、教法分析 基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。 2、学法分析 新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。 五、教学过程 为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。 (1)知识导入 温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。 (2)讲授新课 例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像 让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。 前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解, (3)巩固练习 我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。 (4)归纳总结 我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。 (5)布置作业 略 尊敬的各位专家、评委: 上午好! 今天我说课的课题是人教A版必修1第二章第二节《对数函数》。 我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。 一、教材分析 地位和作用 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。 二、目标分析 (一)、教学目标 根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标: 1、知识与技能 (1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型; (2)、理解对数函数的概念、掌握对数函数的图像和性质; (3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。 2、过程与方法 引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。 3、情感态度与价值观 通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。 (二)教学重点、难点及关键 1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。 2、 难点:底数a对对数函数的图像和性质的影响。 [关键]对数函数与指数函数的类比教学。 由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。 三、教法、学法分析 (一)、教法 教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法: 1、启发引导学生思考、分析、实验、探索、归纳; 2、采用“从特殊到一般”、“从具体到抽象”的方法; 3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法; 4、投影仪演示法。 在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。 (二)、学法 教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导: 1、对照比较学习法:学习对数函数,处处与指数函数相对照; 2、探究式学习法:学生通过分析、探索,得出对数函数的定义; 3、自主性学习法:通过实验画出函数图像、观察图像自得其性质; 4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。 四、教学过程分析 (一)、教学过程设计 1、创设情境,提出问题。 在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。 问题一:这是一个怎样的函数模型类型呢? 设计意图 复习指数函数 问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图 为了引出对数函数 问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的`值呢? 设计意图 (1)、为了让学生更好地理解函数; (2)、为了让学生更好地理解对数函数的概念。 2、引导探究,建构概念。 (1)、对数函数的概念: 同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。 设计意图 前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。 但是在习惯上,我们用x表示自变量,用y表示函数值。 问题一:你能把以上两个函数表示出来吗? 问题二:你能得到此类函数的一般式吗? 设计意图 体现出了由特殊到一般的数学思想 问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。 问题四:你能根据指数函数的定义给出对数函数的定义吗? 问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么? 设计意图 前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。 (2)、对数函数的图像与性质 问题:有了研究指数函数的经历,你觉得下面该学习什么内容了? 设计意图 提示学生进行类比学习 合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。 y=2x;y=log2x y=( )x,y=log x 合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系? 设计意图 在这儿体现“从特殊到一般”、“从具体到抽象”的方法。 合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。 设计意图 学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么? 问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0 问题3:对数式logab的值的符号与a,b的取值之间有何关系? 知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。 3、自我尝试,初步应用。 例1:求下列函数的定义域 y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。) 例2:利用对数函数的性质,比较下列各组数中两个数的大小: (1)、㏒2 3.4,log2 3.8; (2)、log0.5 1.8,log0.5 2.1; (3)、log7 5,log6 7 (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法) 合作探究4:已知logm 4 设计意图 该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。 4、当堂训练,巩固深化。 通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。 采用课后习题1,2,3. 5、小结归纳,回顾反思。 小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。 (1)、小结: ①对数函数的概念 ②对数函数的图像和性质 ③利用对数函数的性质比较大小的一般方法和步骤, (2)、反思 我设计了三个问题 ①、通过本节课的学习,你学到了哪些知识? ②、通过本节课的学习,你最大的体验是什么? ③、通过本节课的学习,你掌握了哪些技能? (二)、作业设计 作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。 我设计了以下作业: 必做题:课后习题A 1,2,3; 选做题:课后习题B 1,2,3; (三)、板书设计 板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。 五、评价分析 学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。 以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。 谢谢! “说课”有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。以下是小编整理的函数的概念说课稿,希望对大家有帮助! 尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。 新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。 一、说教材 首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2.1的内容,本节课的内容是函数概念。函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。 二、说学情 接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。 三、说教学目标 根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标: (一)知识与技能 理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。 (二)过程与方法 通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。 (三)情感态度价值观 在自主探索中感受到成功的喜悦,激发学习数学的兴趣。 四、说教学重难点 我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。 五、说教法和学法 现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。 六、说教学过程 下面我将重点谈谈我对教学过程的设计。 (一)新课导入 首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。 利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。 (二)新知探索 接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。 首先利用多媒体展示生活实例 (1)某山的海拔高度与气温的变化关系; (2)汽车匀速行驶,路程和时间的变化关系; (3)沸点和气压的变化关系。 引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的.概念,判断各个实例中的两个变量之间的关系是否为函数关系。 预设:①都有两个非空数集A、B;②两个数集之间都有一种确定的对应关系;③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。 接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题 问题1:函数的概念是什么?初中与高中对函数概念的定义的异同点是什么?符号“x”的含义是什么? 问题2:构成函数的三要素是什么? 问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间? 十分钟过后,组织学生进行全班交流。 预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。 函数的三要素包括:定义域、值域、对应法则。 区间: 为了使得学生对函数概念的本质了解的更加深入此时进行追问 追问1:初中的函数概念与高中的函数概念有什么异同点? 讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。 追问2:符号“y=f(x)”的含义是什么?“y=g(x)”可以表示函数吗? 讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。 追问3:对应关系f可以是什么形式? 讲解过程中注意强调,对应关系f可以是解析式、图象、表格 追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。 讲解过程中注意强调,函数的三要素缺一不可。 追问5:用区间表示三个实例的定义域和值域。 设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。 (三)课堂练习 接下来是巩固提高环节。 组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定义域和值域并用区间表示。 这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。 (四)小结作业 在课程的最后我会提问:今天有什么收获? 引导学生回顾:函数的概念、函数的三要素、区间的表示。 本节课的课后作业我设计为: 1.求解下列函数的值 (1)已知f(x)=5x-3,求发(x)=4。 (2)已知 求g(2)。 2.如图,某灌溉渠道的横截面是等腰梯形,底宽2m,渠深1.8m,边坡的倾角是45° (1)试用解析表达式将横截面中水的面积A表示成水深h的函数 (2)确定函数的定义域和值域 (3)尝试绘制函数的图象 这样的设计能让学生理解本节课的核心,并为下节课学习函数的表示方法做铺垫。 我担任高职单招辅导班的数学科教学,可以说每节课都是复习课。今天,我说的是复习课这种课型。内容是《函数》这一章中的“反函数”这一节。 一、教材分析: 反函数这一节在《函数》这章中是一个难点,篇幅不多(课时少),在高考考纲中的要求也比较简单。但我个人这样认为,复习课应尽量把与本节内容相关的新旧知识系统地串在一起,所以在备课时要找一条能把知识点连在一起的线索。这线索就是函数的三要素: (一)教学目标: ①使学生掌握反函数的概念并能求出简单函数的反函数(考纲要求)。 ②互为反函数的两个函数具有的性质,以及这些性质在解题中的运用。 ③通过知识的.系统性,培养学生的逆向思维能力和逻辑思维能力。 (二)重点、难点: ①重点:使学生能求出简单函数的反函数。 ②难点:反函数概念的理解。 二、教学方法: 整节课采用传统的讲解法。 首先要认识反函数应先有函数的概念这知识,用例子来说明反函数的求法以及让学生来完成一题没有反函数的函数,从而得出一个不满足函数定义的关系式,通过分析来得到一个函数具有反函数的条件。这里是用“欲擒故纵”的手法,加深对概念的理解,也是突破难点的关键。 三、学生学习方法: 学生认识了反函数的求法(步骤),在老师的引导下得出三个结论,并运用这些结论来解题。希望能达到提高学生性质的解题能力和思维能力的目标。 四、教学过程: (一)温故:函数的概念、三要素 (二)新课:例1:求y=2x+1的反函数 解: 即(x∈R) 注意步骤,新关系式满足从R到R是一个函数关系式。 互这反函数的特点: ①运算互逆;②顺序倒置 例2:y=x2(x∈R)用y的代数表示x 得x=这x不是y的函数,不满足函数定义 若对,y=x2的定义域改为x≥0 可得x=,即y=(x≥0) 当逆对应满足函数定义,原函数才存在反函数。 得到结论①互为反函数的定义域、值域交换 即 分别在同一坐标上画出以上互为反函数的图象 得到结论②图象关于y=x对称 ③单调性一致 (三)练习 1、求的反函数,并求出反函数的值域。 2、函数的图象关于对称,求a的值。 讲评:略。 (四)小结: (五)布置作业: 一、教材分析 1、教材内容 本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题. 2、教材所处地位、作用 函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的`应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法. 3、教学目标 (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性 的方法; (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力. (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质. 4、重点与难点 教学重点(1)函数单调性的概念; (2)运用函数单调性的定义判断一些函数的单调性. 教学难点(1)函数单调性的知识形成; (2)利用函数图象、单调性的定义判断和证明函数的单调性. 二、教法分析与学法指导 本节课是一节较为抽象的数学概念课,因此,教法上要注意: 1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性. 2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决. 3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达. 4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性. 在学法上: 1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力. 2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃. 三、 教学过程 教学 环节 教 学 过 程 设 计 意 图 问题 情境 (播放中央电视台天气预报的音乐) 满足在定义域上的单调性的讨论. 2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程. 3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义. 4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题. 一、说教材 1.《指数函数》在教材中的地位、作用和特点 今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。 此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。 2.教学目标、重点和难点 通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面: 知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。 能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。 素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。 (1)教学目标 知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系②掌握指数函数的概念③掌握指数函数的图象和性质 能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力; 情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力 (2)教学重点和难点 教学重点:指数函数的图象和性质。 教学难点:指数函数的图象性质与底数a的关系。 (3)教学关键: 从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。 二、教法与学法指导 1.学法指导 由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试: (1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。 (2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。 (3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的`乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。 (4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。 2.教法选择 (1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法 (2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图) 三、教学设计 在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。 1.创设情景、导入新课 教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,......,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。③引导学生把对应关系概括到形式。 学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式; 设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。 2.启发诱导、探求新知 (1)指数函数概念的引出 教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。 学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。 设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。 (2)研究指数函数的图象 教师活动:①给出两个简单的指数函数 和 ,并要求学生画它们的图象②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象③利用函数作图器和几何画板作图。 学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象③让学生利用计算器或计算机来画。 设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。 四、板书设计 考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书, 说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。 尊敬的各位考官: 大家好,我是今天的X号考生,今天我说课的题目是《方程的根与函数的零点》。 教学理论认为,学生是学习的主体,教师是学习的组织者和引导者。依据这一教学理念,本节课我将从教材分析、学情分析、教学过程等几个方面来加以说明。 一、说教材 首先说说我对教材的理解。 本节课选自人教A版高中数学必修1第三章第1节。结合学生之前所学基本初等函数的图象及性质,引入本节课的学习,不仅能让学生感受到知识之间的联系,同时也为后面学习“用二分法求方程的近似解”奠定基础。 二、说学情 下面谈谈学生的情况。 之前函数与方程的大量学习为本节课打下了良好的基础,但学生并未考虑过如何判断任意一个方程是否有解。因此在教学过程中,我会注重对学生的启发引导,引导学生从具体到抽象,从特殊到一般,一步步得出结果。 三、说教学目标 根据以上对教材和学情的分析,我设计了如下教学目标: (一)知识与技能 理解方程的根与函数零点之间的关系,掌握函数零点存在的判定方法,会判断函数零点的个数。 (二)过程与方法 经历观察、思考、分析、猜想、验证的过程,提升抽象和概括能力;体验从特殊到一般的认知过程,发展函数与方程思想。 (三)情感、态度与价值观 感受数学知识前后间的联系,并逐步养成善于探索的思维品质。 四、说教学重难点 结合教学目标的`确立,我设置本节课教学重点为:函数零点与方程的根之间的联系,利用函数性质判定零点存在。教学难点为:利用函数性质判定零点存在的探索及应用。 五、说教法和学法 为了实现教学目标,突破教学重难点,本节课我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。 六、说教学过程 下面我将重点谈谈我的教学过程。 (一)引入新课 首先是导入环节。我会带领学生复习到目前为止所学过的函数都有哪些。根据学生的举例我会提问:若将函数改写成方程,是否都可以求解?如若不能,能否判断出该方程是否有解?学生很容易发现,对于复杂方程或未接触过的方程,是没有办法求解的,由此引发认知冲突,进而进入本节课的学习。 通过这样的导入,由已知到未知,学生能够感受到前后知识之间的联系以及知识的螺旋上升,有效激发学生的好奇心,为新课的展开做好铺垫。 (二)讲解新知 1、教学目标: 一、借助单位圆理解任意角的三角函数的定义。 二、根据三角函数的定义,能够判断三角函数值的符号。 三、通过学生积极参与知识的"发现"与"形成"的过程,培养合情猜测的能力,从中感悟数学概念的严谨性与科学性。 四、让学生在任意角三角函数概念的形成过程中,体会函数思想,体会数形结合思想。 2、教学重点与难点: 重点:任意角的正弦、余弦、正切的定义;三角函数值的符号。 难点:任意角的三角函数概念的建构过程。 授课过程: 一、引入 在我们的现实世界中的许多运动变化都有循环往复、周而复始的现象,这种变化规律称为周期性。如何用数学的方法来刻画这种变化?从这节课开始,我们要来学习刻画这种规律的数学模型之一――三角函数。 二、创设情境 三角函数是与角有关的函数,在学习任意角概念时,我们知道在直角坐标系中研究角,可以给学习带来许多方便,比如我们可以根据角终边的位置把它们进行归类,现在大家考虑:若在直角坐标系中来研究锐角,则锐角三角函数又可怎样定义呢? 学生情况估计:学生可能会提出两种定义的`方式,一种定义为边之比,另一种定义在比值中引入了终边上的一点P的坐标。 问题: 1、锐角三角函数能否表示成第二种比值方式? 2、点P能否取在终边上的其它位置?为什么? 3、点P在哪个位置,比值会更简洁?(引出单位圆的定义)。指出sina=mP的函数依旧表示一个比值,不过其分母为1而已。 练习:计算的各三角函数值。 三、任意角的三角函数的定义 角的概念已经推广道了任意角,那么三角函数的定义在任意角的范围里改怎么定义呢? 尝试:根据锐角三角函数的定义,你能尝试着给出任意角三角函数的定义吗? 评价学生给出的定义。给出任意角三角函数的定义。 四、解析任意角三角函数的定义 三角函数首先是函数。你能从函数观点解析三角函数吗?(定义域) 对于确定的角a,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数。 五、三角函数的应用。 1、已知角,求a的三角函数值。 2、已知角a终边上的一点P(-3,-4),求各三角函数值。 以上两道书上的例题,让学生自习看书,学生看书的同时,老师提出问题: 1、已知角如何求三角函数值? 2、利用角a的终边上任意一点的坐标也可以定义三角函数,你能给出这种定义吗?(这种定义与课本中给出的定义各有什么特点?) 3、变式:已知角a终边上点P(-3b,-4b),(b0),求角a的各三角函数值。 4、探究:三角函数的值在各象限的符号。 六、小结及作业 教案设计说明: 新教材的教学理念之一是让学生去体验新知识的发生过程,这节《任意角三角函数》的教案,主要围绕这一点来设计。 首先,角的概念推广了,那么锐角三角函数的定义是否也该推广到任意角的三角函数的定义呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。 其次,到底应该怎样去合理定义任意角的三角函数呢?让学生提出自己的想法,同时让学生去辨证这个想法是否是科学的?因为一个概念是严谨的,科学的,不能随心所欲地编造,必须去论证它的合理性,至少这种概念不能和锐角三角函数的定义有所冲突。在这个立-破的过程中,让学生去体验一个新的数学概念可能是如何形成,在形成的过程中可以从哪些角度加以科学的辩思。这样也有助于学生对任意角三角函数概念的理解。 再次,让学生充分体会在任意角三角函数定义的推广中,是如何将直角三角形这个"形"的问题,转换到直角坐标系下点的坐标这个"数"的过程的。培养数形结合的思想。 【高中函数说课稿】相关文章: 《函数概念》说课稿07-07 函数概念说课稿11-28 《对数函数》说课稿12-22 《函数的奇偶性》说课稿07-28 二次函数说课稿07-23 一次函数说课稿04-30 高中说课稿范文10-11 高中历史说课稿01-11 高中物理说课稿04-29 篇二:高一数学必修一说课稿
高中函数说课稿9
高中函数说课稿10
高中函数说课稿11
高中函数说课稿12
高中函数说课稿13
高中函数说课稿14
高中函数说课稿15