数学说课稿

时间:2024-05-20 18:07:04 说课稿 我要投稿

数学说课稿汇总(15篇)

  作为一名优秀的教育工作者,通常需要用到说课稿来辅助教学,认真拟定说课稿,那要怎么写好说课稿呢?下面是小编精心整理的数学说课稿,仅供参考,大家一起来看看吧。

数学说课稿汇总(15篇)

数学说课稿1

  一、本节内容的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特内容。这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的能力

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的`内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的"发现"和接受,进而完成知识的内化,使书本的知识成为自己的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?

  引伸2:若完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?

  这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。

  板书分类计数原理内容:

  完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理内容)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么,完成这件事共有

  N=m1×m2×…×mn

  种不同的方法。

  同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)

  (1) 各步骤相互依存,只有各个步骤完成了,这件事才算完成;

  (2) 根据问题的特点在确定的分步标准下分步;

  (3) 分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1) 每一个三位数是由什么构成的?(三个整数字)

  (2) 023是一个三位数吗?(百位上不能是0)

  (3) 组成一个三位数需要怎么做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4) 怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.

  答:可以组成100个三位整数。

  (教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。

  教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4.学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7.

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?

  (提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?

  (提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。

数学说课稿2

  一、说教材

  “数据的分段整理”是苏教版小学数学四年级上册第九单元《统计与可能性》中的内容。分段整理数据是基本的统计活动,在第一学段,学生已经能够按统计对象的某些属性,如品种、形状、颜色、用途……进行分类统计。本单元继续教学把一组数据按大小分成若干段进行统计,并把统计获得的数据填入相应的统计表里。本课时是初步教学分段统计数据,所以例题和习题都明确了数据以及各段的数值范围,不要求学生独立设计分段。本课时内容主要是数据的分段整理。教材通过创设学校准备为鼓号队员购买服装,想请全体学生出谋划策的教学情境,引出怎样购买鼓号服这一学习任务。使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据,完成统计表,分析整理后的数据,根据分析结果解决实际问题。

  《数学课程标准》指出,教师不应只做教材忠实的实施者,而应该做教材的开发者和建设者,要学会创造性地使用教材。为了更加贴近每个学生生活经历,让学生有话可说,我对教材进行了重新开发,把购买鼓号队服改为购买校服。围绕购买校服而产生的一系列问题,引导学生经历“收集数据——分段整理——制作统计表——分析数据”的全过程,而学习重点放在分段整理数据上,整理的方法采用多种方法,在交流比较的过程中逐步优化,突出画“正”字的方法,得到的数据仍然采用单式统计表描述。所以教学中应突出数据分段的必要性、分段方法以及如何分段整理,使学生在活动中掌握这部分知识,形成相关的统计技能。为今后更进一步学习统计图表、概率等知识打好基础。

  二、说学情

  四年级的学生由于在第一学段中对数据统计过程已有所体验,并学会了一些简单的收集,整理和描述数据的方法,能根据统计结果回答一些简单的问题。在此基础上,再次经历统计过程,让学生进一步体会收集和整理数据的必要性,感受统计是解决问题的方法之一。

  根据小学儿童好动、注意力容易分散、求知欲强等心理特征,在教学中,我注重创设与学生生活的环境、知识背景密切相关的,又是学生感兴趣的学习情境。从学生熟悉的事物出发,有效地组织、引导学生进行观察、交流、反思等活动,并使全体学生参与到实践活动之中。

  三、说教法与学法

  《数学课程标准》指出,数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。传统的.严格意义上的教师教和学生学,应该不断让位于师生互教互学,彼此形成一个“学习共同体”。

  根据教材内容的特点,结合学生实际,在教学中我灵活采用谈话法、观察法、讨论法、练习法等多种教学方法。引导学生通过搜集全班同学的身高数据、根据服装型号分段、用画“正“字等方法整理、绘制统计表、利用统计数据到服装厂定做校服等。用统计方法解决问题。学生在迫切完成任务和强烈的探究兴趣驱动下,对本来枯燥的统计知识产生一种新鲜感和真实感,每个学生都能自觉地参与到学习中。学生能自然而然地根据已有的生活经验,通过调查访问、探究尝试、合作商讨、交流反思等多种学习方法,真实经历用统计解决问题的全过程,特别是学会了分段整理的方法,从而获得了成功的愉悦体验。

  A、重视激活学生的生活经验

  本课的导入,给学生做校服的情境,使学生能想到要按身高数据分段整理,感受分段整理的必要性。然后引导学生自主分段整理数据。学生经历了统计的全过程,感受到统计表与身边的人和事是息息相关的。最后,布置学生写一份建议书,也是深有教育价值的。

  B、重视引导学生进行分析

  数据统计的全过程有数据收集,数据整理,统计制表,分析数据,得出结论五个环节,其中分析数据是重要的环节,也是课程标准中强调的内容。在“女生1分钟跳绳检测”一题中,我引导学生尝试分析“你看了这张统计表,你知道了什么?”在“空气质量”一题中,我让学生说“看了这些数据,你觉得常州市的空气质量情况如何?为什么?作为一个常州的小市民,你觉得能为改善常州的环境做些什么?”学生的分析是推己及人,丰富多彩的,是符合孩子心理实际的。设计这样的分析,我认为是统计中必不可少的环节,也是对学生进行行为习惯教育的良好载体。

  四、说板书设计

  好的板书,应是课堂上所讲内容的简缩,简单明了、富有条理性,使学生能够利用板书清楚地了解到本课所讲的内容,我的板书设计如下:

  数据的分段整理

  收集数据

  分段整理不重复

  制成统计表不遗漏

  分析数据

数学说课稿3

  各位专家领导,上午好:今天我说课的课题是《勾股定理》

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  ⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  勾股定理的证明与运用

  用面积法等方法证明勾股定理

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的'底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

数学说课稿4

  一、说教材

  工程问题是用分数解答有关工作总量、工作时间、工作效率的应用题。它的解题思路与整数应用题的解题思路基本相同,仍然是用工作总量除以工作效率等于工作时间,只是题中没有给出具体的工作总量。解答时,要把工作总量作为单位“1”,用单位时间内完成工作总量的几分之一来表示工作效率。这样,由于解题中遇到的不是具体数量,有的学生往往感到抽象,不易理解。

  教学重点是:掌握工程问题的数量关系和解答方法。

  难点是:如何分析分数工程问题的数量关系。关键是:正确分析题目中哪个量是工作总量、工作时间和工作效率。

  二、说教法

  现代数学理论认为,小学数学课应增加学生的数学活动,依据本单元教材特点和学生认知规律,这节课我主要运用复习引入法、情境教学法、启发分析法等进行教学。并运用电化教学手段增加教学的新颖性,引导学生多种感官参与学习的全过程。

  三、说学法。

  教与学密不可分,教是为了更好地学。因此要做到“授人以鱼,不如授入以渔”。根据学生的学习规律,在教学过程中,主要指导学生掌握如下学习方法:转化迁移的方法、比较分析法、总结归纳法。

  四、说教学过程。

  根据教学大纲的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,本课教学过程的设计分四个环节。

  第一环节是复习铺垫。

  由于用分数解工程问题与整数解工程问题的思路基本相同,仍然是工作总量除以工作效率等于工作时间,只是题目中没有给出具体的工作总量,解答时要把总量作为单位“1”,用单位时间完成工作总量的几分之一来表示工作效率。所以我先让学生口答:(1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。(2)如果这项工程每天完成 ,( )天完成。巩固了旧知,为学习新知作好铺垫。

  第二环节是学习新知识,分三步进行。

  第一步:加深对整数解工程问题的数量关系的理解。

  出示:三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成?

  引导学习读题,明确已知、未知条件及怎样列式。学生列出正确算式之后引导学生说出这个算式每一步表示的意思,根据是什么,弄清题目中的数量关系。

  第二步:探究用分数解工程问题。

  这是本课的重点和难点。出示改变题目(即把上题中的“200米”去掉)。启发学生想:没有这个条件,这道题能不能解答?引导学生想:可以把这条跑道看作单位“1”,那么甲队每天修这条跑道的几分之几?乙队每天修这条跑道的几分这几?两队合修,每天可修这条跑道的几分之几?两队合修几天可以完成怎样求?根据是什么?通过这些问题,联系学过的工程问题的数量关系,逐一解决每个问题,也就突破了这节课的难点。

  第三步,比较分数解和整数解工程问题,加深印象。

  比较上下两道题,使学生认识到这两种解法在思路上是一致的,数量关系基本相同,都是用工作总量除以工作效率的和。只是在后一种解法中没有给出工作总量的具体数量,只给出“一段公路”,“一项工程”,“一件工作”,“修一条路”等,解答时把工作总量看作单位“1”,用工作总量的几分之一来表示工作效率。

  第四环节是练习、巩固。

  练习是使学生掌握知识、形成技能发展智力的重要手段,因此我在设计练习时尽量地做到科学、合理,体现一定的层次性,针对性,有坡度,难易适中。

  工程问题应用题

  教学目标:

  1、 了解工程问题的结构特征及数量关系,学会解答比较简单的'工程问题。

  2、 在主动参与、发现和揭示数学原理和方法中提高思维水平。

  教学流程

  一、复习铺垫

  1、谈话:

  同学们,我们学校准备在明年暑假把操场上的跑道改造成塑胶跑道。你见过塑胶跑道吗?它有什么优点?但铺塑胶跑道需要很多钱,还需要专业的施工队。

  2、出示:

  (1)如果这项工程计划12天完成,平均每天修( )。今天完成了工作的( )还剩( )。

  (2)如果这项工程每天完成 ,( )天完成。

  3、揭题:

  在日常生活中,像修跑道、造桥、运货、搞绿化等各种工作,我们统称为工程,今天的这节课我们就一起来研究工程问题。

  二、探究新知

  1、谈话:

  如果我们能将修塑胶跑道这项工程进行招标。应聘单位有两个,他们都承诺能保质保量完成任务。但甲工程队单独完成需10天,乙工程队单独完成需8天。

  问:(1)如果你是校长,你选择哪个施工队?为什么?

  (2)但新学期开学迫在眉睫,为了 同学们在新学期一开学就能在跑道上上体育课,如果你是校长,又该怎么办呢?

  2、出示:

  三毛小学要修200米的塑胶跑道,甲队独修要10天,乙队独修要8天,两队合修要几天可以完成。

  (1)独立解题 200÷(200÷10+200÷8)= 4 (天)

  (2)交流反馈、小结数量关系式:

  讨论:200÷10与200÷8各表示什么?这两个商加起来又表示什么?再用200除以它们的和得到了什么?根据什么数量关系算出合作的时间?

  板书(工作总量÷工作效率和=合作工作时间)

  (3)那如果要修建的塑胶跑道是400米,800米又要多少天时间呢?独立做。

  400÷(400÷10+400÷8)=4 (天)

  800÷(800÷10+800÷8)= 4 (天)

  (4)讨论:三道题做完了,你有什么发现?猜猜如果跑道是1000米的话,用几天时间完成?跑道长度是a米呢?看来完成工程的天数跟工作重量没多大关系?那么到底为什么工作总量在变化,可完工的时间却一样?

  3、出示:

  例、三毛小学要修一条塑胶跑道,由甲工程队单独施工需10天;由乙工程队单独施工要8天完成。两队共同施工需要多少天完成?

  (1)分析思考:A、工作重量不知道怎么办?

  B、甲工程队的工作效率是多少?怎样想出来的? 乙工程队呢?

  (2)怎样列式。(尝试)。

  (3)交流说说 。1÷( + )中。 、 各表示什么? + 又表示什么。“1”

数学说课稿5

  我说课的内容是七年级教科书第一册第二章第二节"数轴"的第一课时 内容。我从以下几个方面对本节课的教学设计进行说明。

  一:教材分析:

  本节课主要是在学生学习了有理数概念的基础上, 从标有刻度的温度计 表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法, 初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数 的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具, 还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二:教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学 目标如下:

  1. 使学生理解数轴的三要素,会画数轴。

  2. 能将已知的有理数在数轴上表示出来, 能说出数轴上的已知点所表示 的有理数,理解所有的有理数都可以用数轴上的点表示

  3. 向学生渗透数形结合的数学思想, 让学生知道数学来源于实践, 培养 学生对数学的学习兴趣。

  三:教学重难点确定:

  正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重 点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

  四:学情分析:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概 念理解不一定很深刻, 许多学生容易造成知识遗忘, 所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生

  不易理解, 容易造成画图中掉三落四的现象, 所以教学中教师应予以简单明白、 深入浅出的分析。 ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注 意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住 学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使 他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见 解,发挥学生学习的主动性。 ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认 识到数学课的科学性, 学好数学有利于其他学科的学习以及学科知识的渗透性。

  五:教学策略:

  由于七年级学生的'理解能力和思维特征, 他们往往需要依赖直观具体形 象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数 的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有 趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启 发式教学法和师生互动式教学模式, 注意师生之间的情感交流, 并教给学生"多 观察、动脑想、大胆猜、勤钻研"的研讨式学习方法。教学中积极利用板书和练 习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口 的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。 为充分发挥学生的主体性和教师的主导辅助作用, 教学过程中设计了七 个教学环节:

  (一)、温故知新,激发情趣

  (二)、得出定义,揭示内涵

  (三)、手脑并用,深入理解

  (四)、启发诱导,初步运用

  (五)、反馈矫正,注重参与

  (六)、归纳小结,强化思想

  (七)、布置作业,引导预习

  六:教学程序设计:

  (一)、温故知新,激发情趣: 首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出 用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最 为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象 概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

  (1)零上 5°C 用 5 表示。

  (2)零下 15°C 用 -15 表示。

  (3)0°C 用 0 表示。 然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出 读数,用直线上的点表示正数、负数和 0 呢?答案是肯定的,从而引出课题: 数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会 到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了 思想上的准备。

  (二)、得出定义,揭示内涵: 教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表 示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为 正方向是习惯与方便所作,由于我们只能画出直线的一部分, 因此标上箭头指明 正方向,并表示无限延伸。)

  (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度, 标数时从原点向右每隔一个单位长度取一点,依次表示

  1、2、3…负数反之。 单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由于画数轴是本节课的教学重点, 教师板书这三个步骤, 给学生以示范。 画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴?"(通过 教师的亲切的语言启发学生,以培养师生间的默契) 通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度 的直线叫做数轴。 至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念 "数轴",使学生初步体验到一个从实践到理论的认识过程。

  (三)、手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么? A、 B、 C、 D、 E、 F、 A、B、C 三个图形从数轴的三要素出发,D 和 F 是学生可能出现的错 误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的 讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练 习本上画一个数轴,(请同学画在黑板上) 学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完 后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学 生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素, 画数轴时这三要素缺一不可。 我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正 确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)、启发诱导,初步运用: 有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴 上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学 习埋下伏笔,这里不再展开。 安排课本 23 页的例

  1, 利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上

  2、要把数标在点的上方 通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点 表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真 正成为教学的主体。 当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去 展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加 深对数形结合思想的理解。

  (五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成:

  1、课本 23 页练习

  2、课本 23 页 3 题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

  3、数轴上的点 P 与表示有理数 3 的点 A 距离是2,

  (1)试确定点 P 表示的有理数;

  (2)将 A 向右移动 2 个单位到 B 点,点 B 表示的有理数是多少?

  (3) 再由 B 点向左移动 9 个单位到 C 点, C 点表示的有理数是多少? 则 先让学生通过小组讨论得出结果, 通过以上练习使学生在掌握知识的基 础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结:

  1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴 吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示 两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点, 并能说出数轴上已 知点所表示的有理数。 (七)、布置作业,引导预习: 为面向全体学生,安排如下:

  1、全体学生必做课本 25 页

  2、最后布置一个思考题: 与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如 何? (来引导学生养成预习的学习习惯)

  七:板书设计:(略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自 主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取 得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢 迎的好教师。

  以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢 大家好!今天我说课的题目是 ,所选用的教材为苏科版义务教育课程 标准实验教科书。

  根据新课标的理念,对于本节课,我将以教什么,怎样教,为什么这样教为思 路,从教材分析,教学目标分析,教学方法分析,教学过程分析四个方面加以 说明。(或加教学评价)

数学说课稿6

  一、说内容:

  义务教育课程标准实验教科书(人教版)四年级下册第八单元《数学广角》第一课时。

  二、说学习目标:

  1、让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。

  2、会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

  3、感悟构建数学模型是解决实际问题的重要方法之一。

  三、说学习重点:

  让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

  四、说学习方法:

  创设情境,激发学生学习数学的兴趣,让学生感受到数学来源于生活,数学就在我们身边

  五、学习过程:

  (一)、初步感知间隔的含义

  1、导入:

  我们已经是四年级的学生了,做操,上体育课都少不了要排队,你会不会派队呢?

  现在老师请三位同学到前面按照老师的要排队,谁愿意来?

  出示要求:(1)面向老师排成一路纵队

  (2)每两位同学之间相隔一米

  告诉学生:第一个同学到最后一个同学的距离叫队伍的长,两个同学之间的距离叫间隔.

  提问:这路纵队长几米?你是怎么知道的?如果我们把刚才的三位同学看成三棵树苗的话,那么三棵树苗之间有几个间隔?你能用线段图表示出来吗?师生共同总结得出结论:排队人数比间隔多一,间隔比人数少一

  2、过度语:

  其实,这样的数学问题,在我们的生活中,随处可见.

  3、再次感悟:

  让学生观察自己的左手,互相说说手指与间隔之间的关系。比如:5个手指之间有几个空格?也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?

  如果我们把五个手指当成五棵小树苗的话,五棵树苗之间应有几个间隔呢?四个间隔在几棵树苗之间呢?你能用一个图表示出来吗?

  提问找生回答:如果画了8棵树,他们之间有几个间隔?9棵树之间有几个间隔?那你们再想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?那20棵树呢?

  仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和同桌互相交流一下)。

  4、根据学生的反馈板书:两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。

  5、小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角运用这些规律来解决生活中的实际问题吧!

  (二)、新授

  出示例题:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

  指导学生读题:

  1.从题目你们知道了什么?(说一说)

  2.题目中每隔5米栽一棵是什么意思?

  3.题目中有什么地方要提醒大家的吗?(两端要栽)

  4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

  5.交流。

  6.反馈。

  (1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

  (2)学生分别说想法。

  7.刚才我们要求路的两端都要栽时,得出植树棵数=间隔数+1,间隔数=植树棵树-1。知道了怎样求路的长度。如果知道了棵数与间隔数,你呢感求出路的长度吗?(培养学生的逆向思维)

  如果两端都不栽的情况下,棵树与间隔数之间有什么关系呢?

  我们还以这道题为例来研究一下:

  (1)同学们在全长100米的小路一边植树,每隔5米栽一棵(两端不栽),一共需要多少棵树苗?

  (2)分小组交流,也可以借助线段图分析

  (3)反馈

  (4)展示结果:两端不栽时,植树棵数=间隔数-1,间隔数=植树棵树+1

  小结:生活中有许多问题都可以用方法解决,如锯木头,上楼梯,插彩旗,摆花等等

  (三)、联系实际、拓展应用

  1、一根木头长10米,平均分成5段,每锯一段要8分钟,共要花多长时间?

  2、王村到李村一共有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

  3、每隔6米种一棵树,共种了36棵,从第一棵到最后一棵有多远?

  4、从一层到三层共48个台级,如从一层到六层共多少个台级?

  5、公路一旁每隔50米有一根电线杆(包括两端)共10根,求路长?

  (四)总结:

  通过这节课的学习,你们有什么收获?

  今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)植树问题不只在植树当中才有,植树只是其中的一个典型,像锯木头,上楼梯, 插彩旗,摆花等现象中都含有植树问题。今天我们学习的植树问题仅仅是两端都栽时和两端都不栽时的情况。在以后的学习中,我们还会学到一端栽一端不栽和封闭图形的植树问题。

  (五)反思:

  在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的`关系,既有趣味性又贴近学生的生活。

  教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是给出间隔和棵数,求路的长度。如:王村到李村一共有16根高压电线杆,相邻两根的距离平均是200米。

  王村到李村大约有多远?练习题3从一层到三层共48个台级,如从一层到六层共多少个台级?由于学生初次接触植树问题,还不能融汇贯通,所以做起来有些难度。他们不明白从一楼到二楼算一层,很多学生认为楼梯的拐角处也该算一层,后来我在另一个班上课之前就先让学生分成小组,去观察,体验,感受,然后讨论,学生经历了这样一个认知过程,就不会出现前面的问题了。

  还有一道时钟的问题,五时时钟敲响5下,需要8秒,12时时敲响12下,需要几秒?要想做好这类题,就得让学生明白,需要的时间应该是第一次钟响与第二次钟响间隔的时间。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。

数学说课稿7

  一、说教材

  1、设计理念

  我遵循:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展”这一基本理念,向学生提供有价值的数学学习内容。让学生在日常生活曾接触、感悟到的大量生动事物中,领悟到在生活中处处有数学,处处用数学。通过动手实践、自主探索、合作交流等活动,有效地引导学生主动地、富有个性地学习,从而构建对平移和旋转的认识。最终实现知识与技能、过程与方法、情感度与价值观三维目标的有机整合。

  2、教材所处的地位和作用

  新教材中,对儿童空间知觉的发展,是从静态的前、后、左、右进一步感悟动态的平移和旋转现象。中年级引入这个内容,用大量感性、直观的生活实例,使学生掌握平移、旋转的运动规律及平移方法,为儿童更好地认识和描述生活空间,提供了重要的认知工具,并为后继学习平行线、角的分类,推导三角形、平行四边形、梯形面积计算公式等内容打好基础。

  3、教学目标

  (1)学生通过观察、操作、分析、归纳等活动:

  初步感知平移、旋转现象;掌握平移和旋转的基本规律;按要求在方格纸上画出简单的平移后的图形;发展学生的空间观念和几何思维。

  (2)学生在经历对平移和旋转现象的探索过程中:

  体验平移和旋转与现实世界的联系;感受变换的数学思想;丰富问题解决的技能;受到数学美的熏陶;提高学习数学的兴趣和合作交流意识。

  4、教学重点、难点

  重点:掌握平移和旋转的基本规律,能区分平移与旋转现象。

  难点:体会物体向不同方向平移的现象;能在方格纸上画出平移后的图形。

  5、教具、学具准备:多媒体课件、图片等。

  二、教法

  “数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程”。根据《课程标准》与建构主义理论,我采用了:师生互动教学法和活动教学法。教师是学习的组织者、引导者、合作者,为了充分调动学生的主动性与积极性,我适时而有针对性地创设一个良好的心理环境、思考环境和人际交流的环境,搭建起师生积极互动的平台。让学生对生活中的平移与旋转现象,进行观察、比较、操作、交流等多种形式的活动,发现其规律。经历一个从具体到抽象的“数学化”的过程。

  三、学法

  “有效教学”的核心是“学生参与”。学习活动不是单纯地掌握书本知识,更重要的是,培养学生立获取知识和运用知识的能力。因此,在学习过程中主要体现了:通过学生观察比较、动手操作、自主探索、合作交流等学习方法,让数学走进学生的生活。

  四、教学过程

  (一)创设情境、揭示规律

  1、观察比较、建立模型

  观察观缆车、弹射塔、转盘、空中飞船等,建立平移、旋转的模型。

  [设计意图:利用多媒体直观动态,能反复再现的优势,在学生大脑中留下具体的、动态的印象。孩子们根据物体的运动特点进行分类,在对比中感悟、理解,从而由具体现象抽象出平移和旋转的模型。]

  2、联系生活,加深理解

  (1)肢体表演游戏

  [设计意图:用严谨的数学语言描述平移和旋转这两种运动象,对三年级学生会有一定的困难的,因此,用肢体语言来感知和表述这两种运动特点,用动作的准确性来弥补语言描述的不足,从而获得进一步的感性认识]。

  (2)学生举例

  [设计意图:通过交流活动,孩子们体验到生活中处处有数学,感受数学与现实生活的息息相关。老师也从中反馈到他们对这个内容把握情况的信息,继而进入下面的环节。]

  (二)动手操作、突破难点

  本课的难点是:

  体会物体向不同方向平移的现象;

  能在方格纸上画出平移后的图形。

  1、设疑引思,自主探究

  比较:谁经过的路长一些?

  [设计意图:三年级学生受知识经验和思维特点的局限,容易把一个图形平移的距离误解为两个图形间的距离。通过这样一个比较位置变化的参与性活动,他们动手操作,检验或修正自己的想法,数物体向某一方向平移的格数这一难点,就在孩子们的积极活动中迎刃而解了。]

  2、观察推理、拓展思路

  小老鼠吃苹果。

  [设计意图:孩子们在激励评价中,思路得以开拓,既巩固了平移的方法,又体验到物体向不同方向平移的现象,培养其求异思维,尝试接纳并欣赏他人。]

  3、水到渠成、学会画图

  画平移轨迹图。

  [设计意图:通过三个层次的活动,掌握了方法,突破了难点。]

  (三)活用新知,巩固升华

  1、基本练习

  (1)判断下面物体的运动,哪些是平移,哪些是旋转?

  (2)移一移,说一说

  (3)涂一涂,画一画

  [设计意图:这样设计,是想让学生沿知识构建的顺序,巩固平移和旋转的规律,掌握平移的'方法。]

  2、提高练习

  [设计意图:从这道练习中,我们看到了,“小课堂大社会”。体现了数学源于生活,又作用于生活。]

  3、发展练习

  [设计意图:通过这个活动,孩子们体会到变换的数学思想,在感受数学美的同时,体会数学的价值。]

  四、回顾总结、反思评价

  [设计意图:这样多层面地让学生参与总结,既达到对新知的回顾反思,又让其享受自我、伙伴及老师评价的喜悦。]

  五、课后小实践

  以小组为单位,观察日常生活中发生的旋转、平移现象,把它画下来或拍下来,加上文字说明,放到班级公共邮箱互相交流。

  一、说教材

  平移与旋转是人教版二年级数学下册第三单元的内容,平移与旋转这两种现象是生活中比较常见的几何现象。课程标准不要求对这两个概念进行定义,更不需要学生去背诵结论性语句,只要求学生紧密联系生活实际去感知这些现象。

  二、说学生

  二年级学生在生活中见到很多平移和旋转的运动现象,在他们的头脑中已有比较感性的平移和旋转意识,受生活经验的限制,对于好多现象的判断还有些模糊,更无法想象,不能透过现象用数学的眼光来抓住运动方式的本质。

  三、说目标

  知士标:

  1、通过生活事例,使学生初步了解图形的平移变换和旋转变换,结合学生的生活实际,初步感知平移和旋转现象。

  2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

  技能目标:使学生能正确判断图形的这两种变换数学思考:在认识平移和旋转现象中,建立初步的空间观念,发展形象思维;初步渗透变换的数学思想方法。

  情感目标:能积极参与对平移和旋转现象的探究活动,感受数学与现实生活的密切联系,培养对身边平移和旋转有关的某些事物的好奇心。

  四、教学重难点

  重点:能判断生活中的平移与旋转现象。

  难点:

  1、对没有旋转到一周的物体的判断,如荡秋千等。

  2、建立学生的空间观点。

  五、教学用具

  教学用具:多媒体课件、游乐园主题图及各种游乐项目运动现象的部分图等。

  学具:学生学环境中的书、文具盒、桌子、凳子等。

  六、教学方式与方法

  1、探究式师生互动学习方式

  2、观察法与分析法七、说教学过程本节课安排了六个层次,分别是玩一玩、学一学、说一说、画一画、做一做、练一练:

  (一)玩一玩感知平移与旋转运动现象

  我是这样引入的:今天老师和同学们一起到公园去玩一玩,(出示主题图),哇,你发现了什么?(通过教师夸张的语言将学生吸引住,然后出示多媒体:旋转椅、缆车、摩天轮、跷跷板、滑滑梯等。在认识的基础上让学生观察它们是怎样在动,并让学生动起手来比一比,根据这些物体的运动进行分类,一类旋转,一类平移,初步感知旋转和平移现象。)

  (二)学一学分析平移和旋转现象的特征(课件出示旋转动画和平移动画)让学生说说什么是平移?什么是旋转?让学生通过实物的再次观察抽象出:旋转就是围绕着一个中心转动,运动方向发生改变。平移就是直直地移动,方向不发生改变。得出旋转与平移这两种现象的本质。

  (三)说一说例举生活中的平移和旋转现象,找出旋转与平移的特征以后,再让学生列举在生活中见到的旋转与平移现象,在说的过程中教师要指导学生对现象描述的准确性和语言表达的完整性。例如:电风扇叶子的转动是旋转现象,学生很可能说成风扇叶子是旋转现象等等。

  列举生活中的旋转与平移现象以后,再让学生眼睛闭上,边想边用手做一做,什么是旋转?什么是平移?

  (四)画一画体验在方格纸中画出平移后的物体本环节主要让学生在方格纸上画出沿水平方向、竖直方向平移后的图形。本知识点是本节课的重点,通过多媒体呈现"蚂蚁搬家"游戏来互动学习突出重点,让学生观察分析得出:要看图形平移了几格,只要先找出一组对应点,再数一数对应点中间有几格,对应点之间的格数就是图形平移的格数。

  (五)做一做在做中体验平移和旋转现象

  让学生利用桌子、凳子、椅子、学具或自己的身体等做一做旋转与平移现象。在做的过程中,教师注意观察,将做的好的点到前面。让他们表演并说说自己做的是哪种运动现象,下面的学生判断正确与错误,并说说为什么?

  等学生做完以后,教师用一根线栓住一只粉笔旋转,让学生判断,然后停下,不做完一周,做荡秋千状,又问学生,这是什么现象?为什么?紧接着推门问:门的运动属于什么现象?为什么?教师在学生回答的基础上总结:象刚才粉笔运动和门的运动,虽然没有做到一周,但是仍然是围绕中心运动,属于旋转运动。然后让学生列举生活中这样旋转的现象。在这里通过老师的做很自然清晰地突破了难点。

  (六)练一练解决生活中的平移和旋转问题在前面学习的基础上,再引导学生完成课后练习,第一题让学生观察之后便回答,然后核对。第二题让学生立完成,然后指生说说为什么这样画?第三题,下列现象哪些是平移?哪些是旋转?自己选择用符号表示出来,然后指生说说为什么这样判断。第四题让学生立完成,然后用动画形式集体订正。第五题作为课堂作业立完成。

数学说课稿8

  一、说教材

  首先谈谈我对教材的理解,《菱形》是人教版初中数学八年级下册第十八章18。2。2的内容,“菱形”是继“四边形”、“平行四边形”和“矩形”之后的一个学习内容,它是在学生掌握了平行四边形的性质与判定,又学习了特殊的平行四边形——矩形,具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习正方形等知识的基础,起着承前启后的作用。四边形既是平面几何中的基本图形,也是平面几何研究的主要对象,因此学好四边形的内容,尤其是特殊的四边形,对学生来说,无论是进一步学习还是实际应用都是很重要的。同时通过探索和证明菱形的特殊性质可以让学生体会证明的必要性并进一步丰富对图形的认识和感受。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  知道并且会用菱形的定义和性质来进行有关的论证和计算。

  (二)过程与方法

  经历探索菱形性质的过程,通过操作发现特征,进一步发展合情推理能力。通过菱形与平行四边形关系的研究,进一步加深对“一般与特殊”的认识。

  (三)情感态度价值观

  在探究菱形性质的过程中,享受成功的喜悦,提高学习数学的兴趣。体会菱形的图形美,感受数学与生活的密切关系。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:菱形性质的探究。本节课的教学难点是:菱形性质的探究和应用。

  五、说教法和学法

  菱形是特殊的平行四边形,这节课教学时注重学生的探索过程,让学生动手操作、观察、猜测、验证,进而获得知识,培养主动探究的能力。教学方法针对本节课的特点,我采用 “创设情境——观察探索——总结归纳——知识运用”为主线的教学模式,动手观察分析讨论相结合的.方法。

  “授人以鱼,不如授人以渔”,本节课的教学中,要帮助学生学会运用观察、分析、比较、归纳、概括等方法,使传授知识与培养能力融为一体,在教师的指导、提示启发下,学生尝试动手操作,提高了学生的实践操作水平,培养了学生动手能力,养成勤动手,勤钻研的习惯。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  通过PPT展示生活中的菱形实例(可活动的衣帽架、收缩门、防护栏等),提问是什么图形,由已知的平行四边形引入新课。

  用这些来源于生活的美丽图片吸引学生的注意力,激发他们的好奇心,诱发学生对新知识的需求。

  (二)新知探索

  利用制作好的平行四边行教具,将平行四边形的一条边平移到一个固定的位置后,让学生观察图形,引导学生观察教具的变化情况,引出菱形的定义(板书定义):

  定义:有一组邻边相等的平行四边形叫做菱形。(板书)

  【设计意图】利用自制教具,有较好的直观性和可操作性,让学生更容易理解菱形的定义,同时加强了与平行四边形定义的对比性。接下来教师用多媒体展示菱形的动画制作过程。

  出示问题

  问题1:菱形是轴对称图形吗?如果是,它有几条对称轴?对称轴之间有什么位置关系?

  问题2:你能看出图中有哪些相等的线段和角吗?

  总结学生回答得到菱形是轴对称图形,它的对角线所在的直线就是它的对称轴。

  以及菱形的性质:

  (1)菱形的四条边都相等。

  (2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  并进一步追问:这还只是我们直观折纸得出来的,那么如何证明它们呢?

  出示求证:

  (1)菱形的四条边都相等。

  (2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  让学生小组讨论进行证明,并请学生进行板演。

  【设计意图】通过动手操作,经历探究对图形的对折,即对轴对称图形的再认识,感受动手实验的乐趣,培养猜想的意识,感受直观操作得出猜想的便捷性,培养学生的观察、实验、猜想等合情推理能力。

  (三)课堂练习

  接下来是巩固提高环节。

  例1:菱形具有而平行四边形不具有性质是( )。

  A。对角相等 B。对角线互相平分

  C。对边相等 D。对角线互相垂直

  例2:这是一个可以活动的菱形衣架,它的边长为16cm,如果墙上钉子间的距离AB=BC=16cm,

  则图中的∠1=________。

  (四)小结作业

  提问:今天有什么收获?

  引导学生回顾:菱形的定理与性质。

  课后作业:

  思考如何求菱形面积。

数学说课稿9

  一、教材分析

  《跳绳》是北师大版一年级数学第三单元的一节新授课,本课是在7的加减法的基础上进行8的加减法教学的。学生基本掌握了简单的说和算。

  二、学生分析

  在本节课之前,学生已经认识了0-10并掌握了7以内的加减法,已具备了解决一些简单实际问题的能力。而且这个班的学生大部分上过学前班,数的组成也基本上知道;大部分的学生会看图说算式。所以这节课的重点是培养学生提出相关的加减法问题的能力,组织学生交流加减法算式,体会加减法之间的关系。

  三、说教学目标

  1、在具体的情境中,探索并掌握“8”的加减法的计算方法。

  2、让学生能根据实际情境列出算式,并能说出算式的含义,培养学生的数感。

  3、指导学生有条理地思考和语言表达能力。

  4.初步养成仔细观察、主动思考、认真倾听、大胆交流的良好学习习惯。

  说教学重点、难点

  重点:能正确计算“8”的加减法,掌握计算方法。

  难点:能用“8”的加减法解决问题。

  四、说教法和学法

  本节课我采取情景演示法,自主探究法,引导学生结合情景图,鼓励学生仔细观察、主动思考,然后提出问题、解决问题、说出算法,掌握8

  的加减法的计算方法并体会数学与生活的联系。

  五、说教学过程

  (一)复习口算。

  (二)创设情景引入。

  (三)学习新知。

  课件出示课本第38页主题图

  1、仔细观察图,从图中你发现了那些数学信息?

  2、提出问题并解决

  (1)一共有几个小朋友?你能列算式解决吗?

  (2)你能说一说算式中各数字的含义吗?

  (3)你是怎么计算出来的?能给大家讲讲吗?

  (4)根据刚才找到的'数学信息,你还能列出不同的加法算式吗?你能说说这个算式表示什么吗?

  (5)你能提出一个用减法解决的问题吗?

  3、师写算式学生猜算式表示的意义。

  4、“8”的组成。

  学生动手操作将8个桃子分给两只猴子。

  5、说一说。

  引导学生观察情境图,结合给出的算式3+5=□进行交流。

  练习

  1、课本练一练1、2题。

  2、手指游戏:同桌两人进行,要求两人的手指合起来是8个。

  (四)小结

  这节课你有什么收获?你的表现怎么样?

  (五)作业布置

数学说课稿10

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:

  等差数列前n项和的公式。

  教学难点:

  等差数列前n项和的公式的灵活运用。

  教学方法

  启发、讨论、引导式。

  教具:

  现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10。

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+。。。。。。+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50个101,所以1+2+3+。。。。。。+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq。

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的'性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+。。。。。。an—1+an也可写成

  Sn=an+an—1+。。。。。。a2+a1

  两式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)

  n个

  =n(a1+an)

  所以Sn=(I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n—1)d代入公式(1)得

  Sn=na1+ d(II)

  上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n—1)d,Sn==na1+ d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量例2、计算:

  (1)1+2+3+。。。。。。+n

  (2)1+3+5+。。。。。。+(2n—1)

  (3)2+4+6+。。。。。。+2n

  (4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n

  请同学们先完成(1)—(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+。。。。。。+n=

  (2)1+3+5+。。。。。。+(2n—1)=

  (3)2+4+6+。。。。。。+2n==n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)

  =n2—n(n+1)=—n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为—1,故可得另一解法:

  原式=—1—1—。。。。。。—1=—n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=—2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=—2,∴a1=6

  ∴S12=12 a1+66×(—2)=—60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+=145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16==8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

  作业:P49:13、14、15、17

数学说课稿11

  一、教材分析

  一年级的学生在入学前,经过了学前教育,很多孩子在未学习这一课前,已能数出100以内数,而且在他们的生活体验中,常常会接触到100以内的数。但孩子们的头脑中,还未有100以内数的概念,这一课教学就是要帮助孩子建立100以内数的概念,为以后学习数学其他知识奠定十分重要的基础。

  教材很注重学生数感的建立,主题图给了学生100这个数有多大的概念,通过估计和比较建立数感。教材还十分重视让学生实际操作,例题1、2、3的教学都是在学生的动手实践中进行,通过操作建立100以内数的概念,初步掌握数100以内数的方法。

  经过对教材的理解的分析,确定以下教学目标、教学重点、教学难点。

  教学目标:

  1、在学生已有知识基础上,学会数100以内数,建立100以内数的概念,能够运用数进行表达和交流。

  2、引导学生观察、操作,初步体验数与生活的密切关系,培养学生的主动探究精神。

  3、与实际生活相联系,让学生体会到数学知识来源于生活,服务于生活。

  教学重点:建立100以内数概念,正确数出100以内数。

  教学难点:数数时接近整十数到整十数的过渡。

  二、教法和学法

  1、动手操作学习,通过让学生动手操作,注意调动学生的学习积极性,使学生各种感官协同活动,做到在观察中思维,在思维中操作,概念的形成由具体到抽象,符合学生的认知规律。

  2、合作学习,师生合作,生生合作贯穿教学全过程,注意学生之间的信息交流,培养孩子的`合作意识,团队精神,营造平等、互助的学习氛围。

  三、教学过程

  1、本课学习是建立在学生20以内数的认识和已有的生活经验的基础上的,他们对100以内数看似了解,却概念模糊,教师在引入时为学生创设学习情境,给孩子们送来礼物,100颗星星,通过观察、估计、比较逐步建立数感。

  2、数植物的种子,首先向学生展示1粒种子的大小,接着让孩子抓一把进行估数,这时也是想通过操作建立数感,但这数感建立已进一步扩展到了视觉,触觉,和空间的范围,然后动手数一数,通过数数达到要验证估计是否准确,学生主动探索数数方法的目的。最后以汇报的形式与全体进行交流。学生数数的方法多种多样,有些是方便快捷,也有些是繁锁缓慢,在这时,对于各种方法的优劣我不进行评论,而是让各种方法得以展示,至于哪一种方法较好,孩子们在操作中是能够体会到的。

  3、数100,这一环节以学生的操作学具为主,要求就更进一步了,物品选择,正好要数出100,还得让人一眼看出有100。提出这些要求的目的在于引导孩子们选择自己认为是方便、快捷的方法把任务完成得又快又好,并在操作中发现,10个十是100,100里面有10个十这一知识点。通过数出数量是100的实物,让孩子经历数1到100的过程,建立100以内数的概念,逐步突破本课的难点,数接近整十数到整十数的过渡。

  在这插入课本36页的练习题2这幅小皮球图,我认为并不重在数出100,而在于用什么方法来数,由于有格子,整齐排列,又有色彩间隔,学生可以较好的去思考以不同方法数出皮球的数量,可能会五个五个数,十个十个数,二十个二十个数,五十个五十个数,前面所学知识既得到巩固,又得到发展。

  4、数数。

  边摆小棒边数数,让学生在操作中体会到十的形成,学会数100以内的数,通过操作突破本课难点,数数时接近整十数到整十数的过渡。

  以竞赛形式练习数数,使得课堂气氛热烈、愉快。孩子的学习兴趣高涨。知识在有趣的活动中得到巩固。

  猜数游戏的设计意图在于培养孩子的数感。游戏中部分孩子不断提醒同伴“猜得太大了,大了,小了,很接近了……”,另一部分孩子在帮助下所猜出的数不断接近目标数,直到猜中。游戏过程中学生的数感得到培养,对100以内数的认识越来越深刻。

  5、生活中的数

  100以内数生活中有很多,通过学生的说一说,让孩子感受到数学知识与生活是如此贴近,知识来源于生活,服务于生活。

数学说课稿12

  各位评委老师,大家好!今天我说课的内容是小班数学活动《"1"和"许多"》,我将从说教材、说目标、说活动准备、说教学法、说活动过程这几个方面进行讲述:

  一、说教材:

  《"1"和"许多"》是幼儿初步认识数量的一个活动内容,现实生活中,在归纳某些物品的多少时都离不开"它们",例如:一个气球、一块蛋糕、一个苹果、许多糖果、许多玩具、许多鞋子等等。如果只是告诉幼儿"1"和"许多"的关系是比较枯燥抽象的,本班大部分幼儿处于小班年龄阶段,根据小班幼儿年龄小,自控能力差,动手能力弱,以具体形象思维为主等特点,本次活动我将通过让幼儿观看课件、游戏以及操作活动相结合的形式,帮助幼儿理解"1"和"许多".在幼儿理解"1"和"许多"的基础上,还鼓励他们自选材料进行操作活动,以此来提高他们的动手操作能力。通过活动的设计,让幼儿以具体直观的学习方法掌握了知识,也让幼儿在游戏中初步体验学习数学的乐趣。

  二、说目标:

  根据小班幼儿喜欢玩游戏,有意注意时间相对较短的身心特点,结合本班幼儿对有关数以及数与量之间的关系理解比较模糊和已有的知识经验水平,我将本节活动的目标定为:

  1.认知目标:

  (1)通过多媒体课件的演示,让幼儿在观察与实际操作中理解"1"和"许多",学习词语"许多".

  (2)引导幼儿感知"许多"可以分成很多的"1",1个1个的物体组成"许多" 的物体。

  2.技能目标:发展幼儿的观察力、实际操作的能力和鼓励幼儿大胆探索的能力。

  3.情感目标:喜欢参加各种游戏活动,愿意与同伴共同探究、互相交流、分享各自的发现。

  激发幼儿对数学活动的`兴趣。

  活动重点:认识"1"和"许多",能用"1"和"许多"归纳物体数量的多少。

  活动难点:感知"许多"可以分成1个1个的物体,1个1个的物体合起来就成了"许多"的物体。

  三、说活动准备:

  活动准备是上好一节课的基础,为了更好地开展本次活动,我做了如下准备:

  1.物质准备:课件《小蝌蚪找妈妈》,在活动中利用多媒体课件的形式,让幼儿获得最

  直观的感受。

  一棵森林里的树(KT板做成)、可粘贴的卡纸"小桃子"(数量与幼儿人数一样多)、许多的糖果、动物头饰、每人一份串项链的材料(许多的珠子,一根绳子)

  2.环境创设:创设一个鱼塘、一个大森林的情景。教师创设愉悦的游戏情景,让幼儿

  在各种游戏活动中逐步获得新知识。

  四、说教学法:

  教法和学法的好坏决定了一节课的质量,它是上好一节课的标准。为了能够让幼儿更好地实现教育目标,结合小班幼儿喜欢在游戏情景中获得新知识的特点,我将本次活动的教学法设为:

  1.直观教学法:教师利用多媒体课件的演示,让幼儿通过直接的观察获得对事物的直接认识,帮助他们理解"1"和"许多"的含义,从而更好地突破重难点。

  2.情境法:本次活动以游戏贯穿始终,教师创设各种游戏情境,使幼儿在游戏情境中轻松地掌握了"1"和"许多",从而激发了幼儿学习数学的兴趣,更好地完成了本次活动的目标。

  3.观察法:教师利用各种游戏的形式,让幼儿通过直接的观察获得对事物的直接认识,从而帮助他们理解"1"和"许多"的含义,更好地突破重难点。

  4.操作法:在活动中教师投放各种操作材料让幼儿进行自主操作,使幼儿在操作活动中获得进一步的认识。

  五、说活动过程:

  《幼儿园教育指导纲要》中明确指出"学习科学的过程应该是幼儿主动探索的过程。教师要让幼儿亲自动手、动脑去发现问题、解决问题,鼓励幼儿之间的合作,并积极参与幼儿的探索活动"根据这一思想,我将利用角色扮演等操作性的游戏手段组织幼儿的教学活动。在本次活动中我把动静结合,实际感知的游戏活动贯穿于活动的始终,采用集体感知、启发诱导、有趣的游戏、实际操作等多种方式,让幼儿感知"1"和"许多"的数量关系,创设愉悦的游戏情景环境,吸引幼儿的注意力,为引导幼儿正确感知"1"和"许多",我设计了以下环节:

  一:以观察课件《小蝌蚪找妈妈》的形式导入活动。

  1.在导入活动中,我以课件演示"小蝌蚪找妈妈"的活动,画面出示许多小蝌蚪找妈妈的情景,引导幼儿发现"池塘里面有一只青蛙妈妈,有许多蝌蚪宝宝".引出主题,让幼儿初步感知"1"和"许多",激发了幼儿活动的兴趣。

  2.进一步感知,并初步区别"1"和"许多"两个不同的量。

  在活动中教师要善于创设情境,小班的幼儿年龄小,他们最喜欢在想象的情景中学习新知识,在本节活动中,我将创设如下情景:现在小蝌蚪找妈妈找的好饿呀,青蛙妈妈很心疼,于是青蛙妈妈要捕许多的虾给每个蝌蚪宝宝吃,每个宝宝只能吃一头虾。引导幼儿说一说"青蛙妈妈一共捕了多少虾给宝宝吃,每个宝宝分几头虾?"让幼儿进一步感知"许多"可以分成很多个"1".

  二:游戏活动《捕鱼》

  用角色游戏调动幼儿的活动兴趣,以教师扮做猫妈妈,幼儿扮作小花猫,一起去鱼塘捕鱼(鱼塘里有许多鱼),一只小花猫只能捕一条鱼的游戏情境,让教师参与到幼儿的游戏当中,既能增加教师与幼儿的亲和力,又能使幼儿的身心得到全面发展。

  三:游戏活动《摘桃子送给猴子吃》

  1.小班的幼儿年龄小,模仿能力强,他们喜欢在各种游戏情景中模仿学习新知识,为达到最好的教学效果,我将创设"摘桃子送给猴子吃"的游戏情景,让幼儿在操作游戏活动中感知"许多"可以分成1个1个的物体,1个1个的物体合起来就成了"许多"的物体。从而达到了活动目的。

  2.进行小组讨论,促进幼儿交流。借助幼儿游戏时愉悦的心情提问,说说:"桃子树上有多少桃子?每个小朋友摘了多少桃子送给猴子?现在猴子有多少桃子吃?"可能这些问题是孩子感兴趣的问题,这时幼儿可能会针对这些问题认认真真的回答。这样的活动,既能促进幼儿的语言表达能力以及促进幼儿与同伴之间交流的机会又能让幼儿实现活动的主要目的。

  四:游戏活动《找朋友》。让幼儿在愉悦的活动中结束本次活动。

  音乐游戏是幼儿最喜欢的游戏形式,歌曲《找朋友》是幼儿最熟悉的歌曲,如果把它们结合在一起,让幼儿参加音乐游戏《找朋友》,将是多么愉快的活动。为了丰富幼儿对"1"和"许多"的认识以及想象的空间,在这一环节中教师没有把游戏玩法直接告诉幼儿,而是在游戏中让幼儿自由想象,如何在游戏中创设"1"和"许多"的情景,幼儿可以自由创设游戏玩法,引导幼儿变换游戏的传统玩法以"一个小朋友去找许多朋友"的游戏形式结束活动。让幼儿在愉快的游戏活动中感知一个一个的好朋友合起来就变成"许多"的好朋友。

  为了能让幼儿更好地在操作活动以及现实生活中感知"1"和"许多"的数量关系,我还设计了延伸活动:

  1.在区域活动中,教师创设各种操作性的游戏,例如"分糖果给小动物们吃""串项链"等等,让幼儿在操作活动中进一步感知"1"和"许多"的关系。

  2.请小朋友们回家后和爸爸妈妈一起找一找家里哪些东西只有一个,哪些东西有许多个?让幼儿在实际生活中发现"1"和"许多".

  本次活动以《纲要》为指导思想,遵循了循序渐进的原则,让幼儿在观察、感知、操作中结束活动。以上是我对本次活动的认识,如有不足,请多多指出!

数学说课稿13

  一、说内容

  《找次品》是人教版数学五年级下册第七单元数学广角的内容。现实生活生产中的“次品”有许多种不同的情况,有的是外观与合格品不同,有的是所用材料不符合标准等。这节课的学习中要找的次品是外观与合格品完全相同,只是质量有所差异,且事先已经知道次品比合格品轻(或重),另外在所有待测物品中只有的一个次品。

  二、说教材

  “找次品”的教学,旨在通过“找次品”渗透优化思想。优化是一种重要的数学思想方法,运用它可迅速有效地解决实际问题。此前学习过的“沏茶”,“田忌赛马”等都运用了简单的优化思想方法,学生已经具有一定的优化意识。本节课以“找次品”这一操作活动为载体,让学生在感受解决问题策略的多样性的基础上,再通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受到数学的魅力。

  仔细阅读教材后,发现教材的编排结构比较重视数学知识的逻辑顺序。例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。例2安排了9个待测物品,要求学生归纳出解决问题的策略,让学生经历多样化过渡到优化的思维过程。教材这样安排,考虑了学生的思维过程,但是对于刚经历找次品的学生来说,为什么要找次品?5个次品是否难度过大?找次品平均分成三份是学生在观察9个待测物品的测量过程中,比较得出的,“为什么平均分成三份是方案”教材没有涉及,学生的疑惑是否会更多呢?

  基于上述考虑,我把教学目标定位在:

  1、让学生初步认识“找次品”这类问题的基本解决手段和方法。

  2、学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。

  3、通过观察多个待测物品时,让学生体会到化策论的成因。

  三、说教法

  在教材中,非常突出的一点是教材比较重视新课程背景下学生之间的小组讨论和探究。确实经过小组讨论,学生之间可以互相补充,迅速达到多种策略的有效补充。但是同时存在的问题是,该教材内容偏难,如果仅通过交流,势必优秀生言之灼灼,而后进生听之糟糟。因此我在执教时选用了学生安静思考,人人动手的形式,让每个学生都动起来,再视情况交流。在反馈中逐步得到提高。

  四、说设计

  (一)课前游戏。课前游戏主要是让学生明白至少需要多少次的含义,为新课教学扫清学生认知上的障碍,出现不必要的过多的纠缠。

  (二)情景导入,激发兴趣。

  (设计意图:“美国挑战者号失事”作为引入,让学生了解事故的原因是由一个不合格的零件造成的,让学生从血的教训中,懂得了次品的危害,领悟到严格检验的必要性,同时把人文教育渗透在教学中。)

  (三)自主探索用天平找次品的基本方法。(安排了3个层次)

  首先安排了从3个正品中找出一个次品来,就是从3瓶菠萝片中找出一瓶少了3片的(这样设计贴近学生的实际生活,为学生喜闻乐见,也为下面探究如何找次品作好铺垫,充分激发学生的求知欲和表现欲。增加课前准备题三瓶中找次品,利于学生进入研究状态,也考虑照顾到中下层次学生。)

  紧接着我刻意安排了4这个环节(设计意图:多了4这一环节,它的作用就是为后面研究5和9中找次品打基础,看似渺小,其实起奠基作用,让学生感悟从4个中找就要比3个中找多了1次。为接下去体现划归的数学思想做准备。也为策略的成因探索埋下伏笔)

  最后安排5个中找次品,仅要求学生说出找次品的方法,不需要进行规律的总结,让学生感受到问题解决策略的多样性。

  (四)尝试解决实际问题,寻找方法。

  首先通过学生自己动手操作,尝试称出从9个中找出次品的方法,以及发现方法。教师引领学生如果是3的`倍数的数,为什么要分成3份,以及为什么而且要平均分成3份对策略的成因作出推理和解释。接着用12去验证发现的规律的正确性。最后运用规律解决27、81、243个…中去找次品。让学生感悟这里其实有规律可寻。

  (五)留与悬念,课余激发探索兴趣。

  这里主要探索非3倍数的策略并且完善找次品的规律,即不能平均分成3份的,尽量平均分成3份,保证有两份数量相同,并且只和第三组差1个,所用的次数是最少的。这是否是的方法。

  (六)学习反思:

  对全课进行输理,回顾找次品的方法和策略。

  五、说体会

  教完以后,体会最深的就是这个难度的教材,教到什么度是合适的?对于策略的成因还有没有更好的、更有说服力的相通的解释方法?教师的反馈怎么样能更有层次一些?课上下来还是觉得问题多多,但自己觉得还是在云里雾里。很希望能得到专家和同行们的帮助和指点。谢谢各位!

数学说课稿14

  我今天说课的题目是小学数学五年级下册最小公倍数。根据新课标的理念,对于本节课我将以教什么、怎么教、为什么这样教为思路,从教材分析、教学目标、教学方法、教学过程等几个方面加以说明。

  首先,先谈一谈我对教材的理解

  这节课是以公倍数、最小公倍数概念为主的教学,它是在学生掌握了倍数、因数和公因数概念的基础上进行教学的,主要是为了以后学习通分做准备。在生活实际中也存在它自身的的意义和作用。教材的编写意图是使抽象的数学知识与生活实际相联系,建立概念;用自己想到的方法尝试求两个数的最小公倍数,体现算法的多样化。

  其次我谈一下学情,小学生的动手欲望较强,学生认识数的概念时更愿意自主参与,自己发现。但是,学生个人的解题能力有限,因此通过小组合作的学习方式能更好地激发他们的数学思维,通过交流获得数学信息。

  根据新课标的标准,教材特点、学生的实际,我确定了如下的教学目标:

  知识与能力目标1、理解公倍数、最小公倍数两个概念的意义。2、初步了解两个数的公倍数和最小公倍数在现实生活中的应用。过程与方法目标经历公倍数和最小公倍数的认识过程,体验观察思考,迁移发现,理解运用的学习方法。情感态度与价值观在学习活动中,体验探索知识过程的乐趣,激发学习的兴趣,培养学严谨认真的学习态度。

  基于以上对教材、学情的分析和教学目标的设立,我确定本课的重点和难点是:

  教学重点理解公倍数和最小公倍数的概念。教学难点掌握公倍数和最小公倍数的概念。

  考虑到小学生的现状,基于本节课的特点,我主要采用了以下的教学方法:情境教学法、活动教学法

  德国教育学家第斯多慧:差的教师只会奉送真理,好的教师则教给学生如何发现真理。

  在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:

  动手操作法、分析归纳法、合作探究法。

  下面,主要谈谈对本课教学过程的设计

  首先进入的是导入新课部分,在这一部分采用设置情景导入法,让同学们都拿出课前准备的一些长3厘米、宽2厘米的长方形纸片以及边长为6cm、8cm的正方形纸片。并且提出问题:请同学们用这些长方形纸片去铺一铺你手中的这两个正方形,看看是否可以正好铺满吗?

  并向同学们解释正好铺满的意思就是无空隙,不重叠。当同学们动手操作之后发现用长3厘米、宽2厘米的长方形纸片只能铺满边长为6cm的正方形纸片,而不能铺满边长为8cm的正方形纸片。此时引导学生思考为什么用长3厘米、宽2厘米的长方形有时可以正好铺满正方形,有时却不能,这是怎么回事呢?

  学生通过思考及同桌交流以后能够答出如果正方形边长是2的倍数,又是3的倍数时,这个正方形就可以被正好铺满,否则就不能。这时我就顺势总结:像6、12、这些数,既是2的倍数,又是3的倍数,这就是我们今天这节课要学习的内容公倍数。这样做可以激发学生主动学习的兴趣,拓展学生的思维,培养学生的动手操作能力。

  接下来进入的是讲授新课部分,在这一部分我主要设计两个环节:

  第一环节:归纳总结出公倍数的概念,针对导入时的情景,继续向学生提问:用长3厘米、宽2厘米的长方形还能够正好铺满哪些正方形纸片。这个问题比较简单同学们能够容易得出答案。通过这个实例让同学来总结归纳概括出公倍数的概念。这样有利于培养学生的概括、归纳能力,这也是新课标理论所要求的。

  接下来进入第二环节:合作探究环节

  在这一环节,主要是让学生通过合作探究寻找两个数的`公倍数的方法,这样做有助于培养学生的合作探究能力。

  把全班同学分成三个学习小组,以小组学习的方式思考并回答问题:找一找6和9的公倍数有哪些?其中最小的公倍数是几?讨论结束后,每个小组派代表来和大家分享他们的成果。在讨论过程中,我会巡视,时刻注意其讨论动向,也会时不时加入他们的讨论当中。

  通过讨论之后,学生得出找公倍数的方法可能有以下几种:

  第一组:依次分别列举6和9的倍数。先依次列举6的倍数和9的倍数,圈出它们公有的倍数,这样就找到了6和9的公倍数是18、36、54等,其中最小的一个18就是6和9的最小公倍数。(板书)

  第二组:只依次列举6的倍数,再从6的倍数中圈出9的倍数,圈出的这些数就是6和9的公倍数。

  第三组:只依次列举9的倍数,再从9的倍数中圈出6的倍数,圈出的这些数就是6和9的公倍数。

  最后教师和同学们一起总结:找这两个数的公倍数可以先分别有序列举两个数的倍数,再找出两个数公有的倍数。也可以先列举其中一个数的倍数,再从中找出另一个数的倍数。

  接下来进入的是巩固练习环节,为了加深对公倍数和最小公倍数的认识,给出集合图,让学生把50以内6和8的倍数、公倍数分别填在下面的圈里,请一位同学到黑板上作,其它同学在自己练习本上作。作完以后学生互评。

  最后是小结、拓展延伸环节

  通过提问:同学们,通过今天这节课学习,你有哪些收获呢?伴随着同学们的回答结束今天的课程。

数学说课稿15

各位评委、老师:

  大家好!我说课的内容是人教版义务教育课程标准实验教科书八年级上册第十五章第二大节第四课单项式的乘法,下面我从教材分析、教学目的的确定、教学方法的选择、教学过程的设计等几个方面对本节课进行分析说明。

  一、教材分析

  本节课主要讲解的是单项式乘以单项式,是在前面学习了幂的运算性质的基础上学习的,学生学习单项式的乘法并熟练地进行单项式的乘法运算是以后学习多项式乘法的关键,单项式的乘法综合用到了有理数的乘法、幂的运算性质,而后续的多项式乘以单项式、多项式乘以多项式都要转化为单项式的乘法,因此单项式的乘法将起到承前启后的作用,在整式乘法中占有独特的地位。

  二、教学目的

  1. 使学生理解单项式乘法法则,会进行单项式的乘法运算 。

  2. 通过单项式乘法法则的推导,发展学生的逻辑思维能力。

  教学目的的第一条的确定是考虑到学生对单项式的概念、有理数乘法、幂的运算都较为熟练,在此基础上导出的单项式乘法法则学生能够达到“理解”的要求,同时由于单项式乘法的所有内容已包含在这节课中,学生能按照一定的步骤完成单项式的乘法运算,据此确定了教学目的的第一条。而单项式法则的导出过程是发展学生逻辑思维能力的极好素材,据此确定了教学目的的第二条。

  三、教学重点、难点:

  重点:掌握单项式乘法法则。

  (这是因为要熟练地进行单项式的乘法运算,就得掌握和深刻理解运算法则,对运算法则理解得越深,运算才能掌握的越好)

  难点:多种运算法则的综合运用

  (这是因为单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,对于初学者来说,由于难于正确辨认和区别各种不同的运算及运算所使用的法则,易于将各种法则混淆,造成运算结果错误。)

  四、教学方法

  本节课在教学过程的不同阶段采用不同的教学方法,以适应教学的需要。

  1、在新课学习阶段的单项式的乘法法则的推导过程中,采用了引导发现法。通过教师设计的问题,引导学生将需要解决的问题转化成用已学过的知识可解决的问题,让学生即掌握了新的知识,又培养了学生探索探索问题的能力,充分体现了教师的主导作用和学生的主体作用,使学生始终处在观察思考之中。引导发现法的使用对实现教学目的的第二条起了很重要的作用,突出了本节课的重点。

  2、在新课学习的例题讲解阶段,采用了讲练结合法。对例题的学习,围绕问题进行,通过教师引导、学生观察、思考,寻求解决问题的方法,在解题的过程中展开思维。与此同时还进行多次有较强针对性的练习,分散难点,对学生分层进行训练,化解难点,并注意及时矫正,使学生在前面出现的错误不致于影响后面的解题,为后面的学习扫清障碍,通过例题的学习教师给出了解题规范,并注意对生良好学习习惯的培养。

  3、在归纳小结这个阶段采用师生共同总结,旨在训练学生归纳的方法,并形成相应的知识系统,进一步防范学生在运算中容易出现的错误。

  4、本节课的教学内容丰富,训练量大,利用投影仪,增大课堂容量,提高课堂教学效率。

  五、教学过程

  本节课的教学过程主要包括以下五个环节:

1、 创设问题情境

2、新课学习

3、反馈练习

4、小结

5、作业布置。

  (1) 创设问题情境

  本节课通过一实际问题,引入课题,这样的目的是通过问题情境的创设,激发学生求知的欲望,通过问题

1、问题

2、的设置进而明确本节课的学习内容。

  (2) 新课学习

  新课学习包括单项式乘法法则的推导和例题讲解。

  ① 单项式乘法法则的推导

  由于八年级学生还不具备独立获取知识的能力,单项式乘法法则的推导必须在教师的指导下完成,为此我设计了两个引例。引例1中的两个问题就是引导学生进行观察、分析两个单项式如何相乘,使学生能运用乘法交换律、结合律和同底数幂的运算性质等知识探索单项式乘以单项式的运算法则。引例2让学生动手尝试,在尝试成功的基础上再提出问题3,由问题3引导学生进行归纳,最后得出单项式乘以单项式的法则。从而实现理解单项式乘法法则的这一教学目的,同时在上述过程中,让学生感受到在研究问题中所体现的“将未知转化为已知”的数学思想,通过尝试活动,使学生体会到从“特殊到一般”的认识规律,从而启迪了学生的思维,使学生亲身感受到数学知识的产生和发展过程,发展了学生的逻辑思维能力,较好地实现了教学目的第二条,教学的重点内容学生得以掌握。

  在此基础上,我又设计了一组简单的练习,由学生回答,强化对单项式的乘法法则的'理解和运用,发现问题及时纠正。

  ② 例题讲解

  本着循序渐进的原则,对例题按照逐步增加运算种类进行了编排,使之由浅入深,由易到难,由单一到综合。我总共设计了三道例题。

  例1是单项式乘以单项式的计算,在讲解此题时关键是让学生按照单项式乘法的法则进行运算。例2是单项式的乘方与乘法的混合运算,在例2后我又设计了一问题,此问题的设计主要是引导学生观察,根椐题目特征,辩认出它们是哪种运算,应选用什么样的法则进行计算,使学生逐渐分清运算类型,正确实运用法则,以实现难点的分散和突破,并提高学生运算的熟练程度。例3是单项式的乘法在实际生活中的应用,通过例3使学生认识到数学在日常生活和生产中应用十分广泛,从而逐步培养学生应用数学的意识。

  在例题的教学过程中除学生口算计算过程,教师要给出规范的解题过程,并要求学生按规范的书写格式进行练习和作业。

  在每道题完成之后,都配有与例题相近的巩固练习,由学生板演和分组练习,发现问题及时纠正,以实现“会进行单项式的乘法计算”这一教学目的。

  (3) 反馈练习

  根据本节课的教学目的我又设计了反馈练习,以了解学生对本节课所学的内容的掌握情况,并再一次对出现的问题进行矫正,使学生对单项式的乘法运算的熟练程度得以加强。

  (4) 小结

  本节课的小结由师生共同完成,先由教师提问,学生回答,然后教师归纳形成知识系统,通过小结,使学生明确单项式的乘法最终将转化为有理数的乘法、同底数的幂相乘、幂的乘方、积的乘方等运算,引起学生对单项式乘法中系数与指数运算易混淆等问题的重视。

  (5) 布置作业

  数量不多的作业,既能让学生能对本节知识掌握得更加牢固,又能有充裕的时间拓展自己的视野。

  六、教学评价、反馈措施

  本节课采用了不同的反馈手段和较多的反馈练习。

  1、设计分段练习。例如练习一-------练习四每次练习主要解决一重点问题,同时使教师及时了解学生对数学知识的掌握情况,发现问题及时矫正,扫清后续学习障碍。

  2、采用不同的练习方法。如口答、笔答、板演、快速强答等,以增加反馈层面。通过练习使大多数学生的学习情况都能及时反馈给教师,使教师对教学情况心中有数。

  3、及时矫正。对每次练习情况进行讲评,对正确的解答及时给予肯定,发现问题及时评讲。

  这就是我对本节课总的设计过程,具体过程将体现在我的课堂教学之中,谢谢大家!

【数学说课稿】相关文章:

数学说课稿05-16

小学数学的说课稿01-09

初中数学的说课稿02-15

数学说课稿11-08

数学统计说课稿07-08

数学广角说课稿07-05

小学数学说课稿02-17

小学数学优秀说课稿05-25

比的应用数学说课稿07-24

初中数学说课稿11-26